he analysis of real-world complex networks has been the focus of recent research. Detecting communities helps in uncovering their structural and functional organization. Valuable insight can be obtained by analyzing the dense, overlapping, and highly interwoven k-clique communities. However, their detection is challenging due to extensive memory requirements and execution time. In this paper, we present a novel, parallel k-clique community detection method, based on an innovative technique which enables connected components of a network to be obtained from those of its subnetworks. The novel method has an unbounded, user-configurable, and input-independent maximum degree of parallelism, and hence is able to make full use of computational resources. Theoretical tight upper bounds on its worst case time and space complexities are given as well. Experiments on real-world networks such as the Internet and the World Wide Web confirmed the almost optimal use of parallelism (i.e., a linear speedup). Comparisons with other state-of-the-art k-clique community detection methods show dramatic reductions in execution time and memory footprint. An open-source implementation of the method is also made publicly available.

Parallel $(k)$-Clique Community Detection on Large-Scale Networks

Enrico Gregori;Simone Mainardi
2013

Abstract

he analysis of real-world complex networks has been the focus of recent research. Detecting communities helps in uncovering their structural and functional organization. Valuable insight can be obtained by analyzing the dense, overlapping, and highly interwoven k-clique communities. However, their detection is challenging due to extensive memory requirements and execution time. In this paper, we present a novel, parallel k-clique community detection method, based on an innovative technique which enables connected components of a network to be obtained from those of its subnetworks. The novel method has an unbounded, user-configurable, and input-independent maximum degree of parallelism, and hence is able to make full use of computational resources. Theoretical tight upper bounds on its worst case time and space complexities are given as well. Experiments on real-world networks such as the Internet and the World Wide Web confirmed the almost optimal use of parallelism (i.e., a linear speedup). Comparisons with other state-of-the-art k-clique community detection methods show dramatic reductions in execution time and memory footprint. An open-source implementation of the method is also made publicly available.
2013
Istituto di informatica e telematica - IIT
Communities
Complexity theory
detection method
Internet
k-clique communities
optimization
parallel community
Parallel processing
Program processors
Sparse matrices
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/257705
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact