A fundamental question in the field of technological forecasting and foresight is how to detect likely fruitful technological trajectories in new research fields, such as nanomedicine. We confront this question by developing an approach based on trends and networks of vital variables, analyzed by bibliometrics, which endeavours to detect fruitful trajectories of nanotechnology applied to ground-breaking anti-cancer treatments. Results tend to show two main technological waves of cancer treatments by nanotechnology applications. The early technological wave in the early 2000s was embodied in some types of chemotherapy agents with a broad spectrum of application, while after 2006 the second technological wave appeared with new applications of chemotherapy agents and molecular target therapy by nanotechnology. The present study shows new directions of nanotechnology-based chemotherapy and molecular cancer therapy in new treatments for breast, lung, brain and colon cancers. A main finding of this study is the recognition that, since the late 2000s, the sharp increase of several technological trajectories of anticancer drugs applied by nanotechnology seems to be driven by high rates of mortality of some types of cancers (e.g. pancreatic and brain) in order to find more effective anticancer therapies that increase the progression-free survival of patients: the so-called technological trajectories mortality driven. The study also points out that global research leaders tend to specialize in anticancer drugs, via nanotechnology, for specific cancers (e.g. Switzerland in prostate cancer, Japan in colon cancer, China in ovarian cancer and Greece in pancreatic cancer). These ground-breaking technological trajectories are paving new directions in biomedicine and generating a revolution in clinical practice that may lead to more effective anticancer treatments in the not-too-distant future.

Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy

Coccia M;
2015

Abstract

A fundamental question in the field of technological forecasting and foresight is how to detect likely fruitful technological trajectories in new research fields, such as nanomedicine. We confront this question by developing an approach based on trends and networks of vital variables, analyzed by bibliometrics, which endeavours to detect fruitful trajectories of nanotechnology applied to ground-breaking anti-cancer treatments. Results tend to show two main technological waves of cancer treatments by nanotechnology applications. The early technological wave in the early 2000s was embodied in some types of chemotherapy agents with a broad spectrum of application, while after 2006 the second technological wave appeared with new applications of chemotherapy agents and molecular target therapy by nanotechnology. The present study shows new directions of nanotechnology-based chemotherapy and molecular cancer therapy in new treatments for breast, lung, brain and colon cancers. A main finding of this study is the recognition that, since the late 2000s, the sharp increase of several technological trajectories of anticancer drugs applied by nanotechnology seems to be driven by high rates of mortality of some types of cancers (e.g. pancreatic and brain) in order to find more effective anticancer therapies that increase the progression-free survival of patients: the so-called technological trajectories mortality driven. The study also points out that global research leaders tend to specialize in anticancer drugs, via nanotechnology, for specific cancers (e.g. Switzerland in prostate cancer, Japan in colon cancer, China in ovarian cancer and Greece in pancreatic cancer). These ground-breaking technological trajectories are paving new directions in biomedicine and generating a revolution in clinical practice that may lead to more effective anticancer treatments in the not-too-distant future.
2015
Istituto di Ricerca sulla Crescita Economica Sostenibile - IRCrES
91
92
Bibliometrics
Biomedicine
Cancer
Chemotherapy
Mortality driven
Nanomedicine
Nanoscience
Nanotechnology
Publications
Radical innovation
Target therapy
Technological paradigm
Technological trajectories
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/257798
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact