Polymeric foams with embedded magnetic particles can be considered as a new class of lightweight systems that could lead to relevant industrial applications both for their enhanced directional (anisotropic) mechanical properties and for their sensitivity to magnetic field that can be used to actively control their elastic modulus. A new polyurethane (PU)/magnetosensitive particles composite foam (SmartFoam) was prepared by applying a magnetic field during its in situ polymerization/foaming process. A chain-like structure of magneto-sensitive particles was induced along the magnetic field lines, in turn controlling the degree of both structural anisotropy and functional properties without affecting the foam cellular morphology. The anisotropic distribution of magnetic particles in the SmartFoam imparted the capability to real-time control its structural properties under working conditions. © 2014 AIP Publishing LLC.

SmartFoams with magneto-sensitive elastic behavior

Sorrentino Luigi;Iannace Salvatore
2014

Abstract

Polymeric foams with embedded magnetic particles can be considered as a new class of lightweight systems that could lead to relevant industrial applications both for their enhanced directional (anisotropic) mechanical properties and for their sensitivity to magnetic field that can be used to actively control their elastic modulus. A new polyurethane (PU)/magnetosensitive particles composite foam (SmartFoam) was prepared by applying a magnetic field during its in situ polymerization/foaming process. A chain-like structure of magneto-sensitive particles was induced along the magnetic field lines, in turn controlling the degree of both structural anisotropy and functional properties without affecting the foam cellular morphology. The anisotropic distribution of magnetic particles in the SmartFoam imparted the capability to real-time control its structural properties under working conditions. © 2014 AIP Publishing LLC.
2014
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
9780735412330
Magnetic field
Magneto-mechanical coupling
Particle Alignment
Polymeric foam
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/257842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact