The high Curie temperature multiferroic compound CuO has a quasidegenerate magnetic ground state that makes it prone to manipulation by the so-called "order-by-disorder" mechanism. First principle computations supplemented with Monte Carlo simulations and experiments show that isovalent doping allows us to stabilize the multiferroic phase in nonferroelectric regions of the pristine material phase diagram with experiments reaching a 250% widening of the ferroelectric temperature window with 5% of Zn doping. Our results allow us to validate the importance of a quasidegenerate ground state on promoting multiferroicity on CuO at high temperatures and open a path to the material engineering of multiferroic materials. In addition we present a complete explanation of the CuO phase diagram and a computation on the incommensurability in excellent agreement with experiment without free parameters.
Tuning order-by-disorder multiferroicity in CuO by doping
A Stroppa;S Picozzi;J Lorenzana
2014
Abstract
The high Curie temperature multiferroic compound CuO has a quasidegenerate magnetic ground state that makes it prone to manipulation by the so-called "order-by-disorder" mechanism. First principle computations supplemented with Monte Carlo simulations and experiments show that isovalent doping allows us to stabilize the multiferroic phase in nonferroelectric regions of the pristine material phase diagram with experiments reaching a 250% widening of the ferroelectric temperature window with 5% of Zn doping. Our results allow us to validate the importance of a quasidegenerate ground state on promoting multiferroicity on CuO at high temperatures and open a path to the material engineering of multiferroic materials. In addition we present a complete explanation of the CuO phase diagram and a computation on the incommensurability in excellent agreement with experiment without free parameters.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_286071-doc_82028.pdf
solo utenti autorizzati
Descrizione: Tuning order-by-disorder multiferroicity in CuO by doping
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
984.28 kB
Formato
Adobe PDF
|
984.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


