Water sorption is a key issue in assessing the durability of polymer matrix composites. In fact absorbed water can adversely affect mechanical properties of the matrix and fibre-matrix interface integrity. In this contribution the general issue of water sorption thermodynamics in polymers is addressed from the experimental and theoretical point of view. The case of both rubbery and glassy polymers is considered modelling thermodynamics of water-polymer systems using lattice fluid theories accounting also for the occurrence of possible self- and cross-hydrogen bonding interactions. Outcomes of theoretical analyses are compared to experimental results obtained by vibrational spectroscopy and gravimetric measurements. © 2014 Springer Science+Business Media Dordrecht.

Water sorption thermodynamics in polymer matrices

2014

Abstract

Water sorption is a key issue in assessing the durability of polymer matrix composites. In fact absorbed water can adversely affect mechanical properties of the matrix and fibre-matrix interface integrity. In this contribution the general issue of water sorption thermodynamics in polymers is addressed from the experimental and theoretical point of view. The case of both rubbery and glassy polymers is considered modelling thermodynamics of water-polymer systems using lattice fluid theories accounting also for the occurrence of possible self- and cross-hydrogen bonding interactions. Outcomes of theoretical analyses are compared to experimental results obtained by vibrational spectroscopy and gravimetric measurements. © 2014 Springer Science+Business Media Dordrecht.
2014
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
9789400774162
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/258467
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact