We propose a denoising method for digital holography mod 2p wrapped phase map by using an adaptation of the SPArsity DEnoising of Digital Holograms (SPADEDH) algorithm. SPADEDH is a l(1) minimization algorithm able to suppress the noise components on digital holograms without any prior knowledge or estimation about the statistics of noise. We test our algorithm with either general numerical simulated wrapped phase, quantifying the performance with different efficiency parameters and comparing it with two popular denoising strategies, i.e., median and Gaussian filters, and specific experimental tests, by focusing our attention on long-sequence wrapped quantitative phase maps (QPMs) of in vitro cells, which aim to have uncorrupted QPMs. In addition, we prove that the proposed algorithm can be used as a helper for the typical local phase unwrapping algorithms. (C) 2013 Optical Society of America

Quantitative phase maps denoising of long holographic sequences by using SPADEDH algorithm

Memmolo Pasquale;Finizio Andrea;Paturzo Melania;Ferraro Pietro
2013

Abstract

We propose a denoising method for digital holography mod 2p wrapped phase map by using an adaptation of the SPArsity DEnoising of Digital Holograms (SPADEDH) algorithm. SPADEDH is a l(1) minimization algorithm able to suppress the noise components on digital holograms without any prior knowledge or estimation about the statistics of noise. We test our algorithm with either general numerical simulated wrapped phase, quantifying the performance with different efficiency parameters and comparing it with two popular denoising strategies, i.e., median and Gaussian filters, and specific experimental tests, by focusing our attention on long-sequence wrapped quantitative phase maps (QPMs) of in vitro cells, which aim to have uncorrupted QPMs. In addition, we prove that the proposed algorithm can be used as a helper for the typical local phase unwrapping algorithms. (C) 2013 Optical Society of America
2013
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Istituto Nazionale di Ottica - INO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/258477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? ND
social impact