A strong light pulse propagating in a nonlinear Kerr medium produces a change in the refractive index, which makes light travel at different speeds inside and outside the pulse. By tuning the pulse velocity, an analog black hole horizon can be obtained in a suitable frequency window. In this paper, we develop a quantum theory of light propagation for this system, including the frequency dispersion of the refractive index of the medium by coupling the electromagnetic field to matter polarization fields. In a configuration with a single black hole horizon, the spectrum of spontaneously emitted particles presents some similarities with Hawking radiation. Furthermore, even in horizonless systems spontaneous vacuum emission is still possible due to the dispersive nature of the medium, yet with dramatically different spectral properties. DOI: 10.1103/PhysRevA.87.023803
Quantum vacuum emission in a nonlinear optical medium illuminated by a strong laser pulse
Carusotto Iacopo
2013
Abstract
A strong light pulse propagating in a nonlinear Kerr medium produces a change in the refractive index, which makes light travel at different speeds inside and outside the pulse. By tuning the pulse velocity, an analog black hole horizon can be obtained in a suitable frequency window. In this paper, we develop a quantum theory of light propagation for this system, including the frequency dispersion of the refractive index of the medium by coupling the electromagnetic field to matter polarization fields. In a configuration with a single black hole horizon, the spectrum of spontaneously emitted particles presents some similarities with Hawking radiation. Furthermore, even in horizonless systems spontaneous vacuum emission is still possible due to the dispersive nature of the medium, yet with dramatically different spectral properties. DOI: 10.1103/PhysRevA.87.023803I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.