Changes in structure and lignin chemistry were investigated in ash wood thermally modified (TMW) by the thermo-vacuum (Termovuoto) process for 3 h at 190-220°C by means of light, fluorescence, and transmission electron (TEM) microscopy combined with histo/cytochemistry. Variation in changes in native cell color in TMWs was positively correlated with differences in lignin content between cell types and cell wall regions in the reference wood. Histochemical staining showed increasing amounts of acidic groups in TMWs with different response to ethanol extraction between secondary cell walls and CMLcc (compound middle lamella/middle lamella cell corner) regions. Fluorescence microscopy of TMWs and references showed a difference in intensity and color emission of lignin autofluorescence, reflecting modification of lignin in TMWs. Changes in histochemistry and fluorescence were prominent at and above 200°C. With TEM, increased intensity of lignin staining and distortion of fiber S1 layers were detected in TMW treated for 3 h at 220°C (TMW3 h, 220°C). TMW3 h, 220°C differed significantly in molecular ultrastructure of fiber cell walls compared to references, such as loss of the lamellar structure and size and distribution of lignin aggregates. The modification in CMLcc structure in ash TMW3 h, 220°C is different from that of softwoods.
Chemical and ultrastructural changes of ash wood thermally modified using the thermo-vacuum process: I. Histo/cytochemical studies on changes in the structure and lignin chemistry
Cuccui I;
2015
Abstract
Changes in structure and lignin chemistry were investigated in ash wood thermally modified (TMW) by the thermo-vacuum (Termovuoto) process for 3 h at 190-220°C by means of light, fluorescence, and transmission electron (TEM) microscopy combined with histo/cytochemistry. Variation in changes in native cell color in TMWs was positively correlated with differences in lignin content between cell types and cell wall regions in the reference wood. Histochemical staining showed increasing amounts of acidic groups in TMWs with different response to ethanol extraction between secondary cell walls and CMLcc (compound middle lamella/middle lamella cell corner) regions. Fluorescence microscopy of TMWs and references showed a difference in intensity and color emission of lignin autofluorescence, reflecting modification of lignin in TMWs. Changes in histochemistry and fluorescence were prominent at and above 200°C. With TEM, increased intensity of lignin staining and distortion of fiber S1 layers were detected in TMW treated for 3 h at 220°C (TMW3 h, 220°C). TMW3 h, 220°C differed significantly in molecular ultrastructure of fiber cell walls compared to references, such as loss of the lamellar structure and size and distribution of lignin aggregates. The modification in CMLcc structure in ash TMW3 h, 220°C is different from that of softwoods.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.