We report for the first time the synthesis of monoclinic WO3 quantum dots. A solvothermal processing at 250 degrees C in oleic acid of W chloroalkoxide solutions was employed. It was shown that the bulk monoclinic crystallographic phase is the stable one even for the nanosized regime (mean size 4 nm). The nanocrystals were characterized by X-ray diffraction, High resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis, Fourier transform infrared and Raman spectroscopy. It was concluded that they were constituted by a core of monoclinic WO3, surface covered by unstable W(V) species, slowly oxidized upon standing in room conditions. The WO3 nanocrystals could be easily processed to prepare gas-sensing devices, without any phase transition up to at least 500 degrees C. The devices displayed remarkable response to both oxidizing (nitrogen dioxide) and reducing (ethanol) gases in concentrations ranging from 1 to 5 ppm and from 100 to 500 ppm, at low operating temperatures of 100 and 200 degrees C, respectively. The analysis of the electrical data showed that the nanocrystals were characterized by reduced surfaces, which enhanced both nitrogen dioxide adsorption and oxygen ionosorption, the latter resulting in enhanced ethanol decomposition kinetics.

Solvothermal, Chloroalkoxide-based Synthesis of Monoclinic WO3 Quantum Dots and Gas-Sensing Enhancement by Surface Oxygen Vacancies

Epifani Mauro;Comini Elisabetta;Siciliano Pietro;Faglia Guido;
2014

Abstract

We report for the first time the synthesis of monoclinic WO3 quantum dots. A solvothermal processing at 250 degrees C in oleic acid of W chloroalkoxide solutions was employed. It was shown that the bulk monoclinic crystallographic phase is the stable one even for the nanosized regime (mean size 4 nm). The nanocrystals were characterized by X-ray diffraction, High resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis, Fourier transform infrared and Raman spectroscopy. It was concluded that they were constituted by a core of monoclinic WO3, surface covered by unstable W(V) species, slowly oxidized upon standing in room conditions. The WO3 nanocrystals could be easily processed to prepare gas-sensing devices, without any phase transition up to at least 500 degrees C. The devices displayed remarkable response to both oxidizing (nitrogen dioxide) and reducing (ethanol) gases in concentrations ranging from 1 to 5 ppm and from 100 to 500 ppm, at low operating temperatures of 100 and 200 degrees C, respectively. The analysis of the electrical data showed that the nanocrystals were characterized by reduced surfaces, which enhanced both nitrogen dioxide adsorption and oxygen ionosorption, the latter resulting in enhanced ethanol decomposition kinetics.
2014
Istituto per la Microelettronica e Microsistemi - IMM
tungsten trioxide
gas-sensing
solvothe
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/259254
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact