A 2-year study was conducted to examine the impact of deficit irrigation on dry biomass, water-use efficiency (WUE), fruit yield and quality in open-field, processing tomato at high plant density in a semi-arid environment. Three irrigation treatments (nil; and 100% (full) and 50% (deficit) restoration of crop evapotranspiration (ETc), respectively) and two plant densities (2.5 (P1) and 5.0 (P2) plants m-2) were studied. Dry biomass and fruit yield per plant were lower in P2 than in P1, but at high plant density the crop compensated for biomass and yield decrease at the plant level. Fruit yield in P2 was greater than that in P1, by 36% in 2004 and 33% in 2005. Water limitation improved quality traits compared with full irrigation. Deficit irrigation, especially in P2, enhanced WUE and allowed a water saving of >45% relative to full irrigation, while keeping high levels of fruit quality. The yield response factor, Ky, which correlates relative fruit yield losses to relative ETc reduction, was higher (0.63) than Kss (0.44), which correlates relative total dry biomass losses to relative ETc reduction, revealing a greater crop sensitivity to soil-water deficit in terms of fruit yield than dry biomass. Therefore, Ky may of use in identifying the plant density at which water productivity is maximised or yield losses are minimised.

Biomass, fruit yield, water productivity and quality response of processing tomato to plant density and deficit irrigation under a semi-arid Mediterranean climate

Saita A
2015

Abstract

A 2-year study was conducted to examine the impact of deficit irrigation on dry biomass, water-use efficiency (WUE), fruit yield and quality in open-field, processing tomato at high plant density in a semi-arid environment. Three irrigation treatments (nil; and 100% (full) and 50% (deficit) restoration of crop evapotranspiration (ETc), respectively) and two plant densities (2.5 (P1) and 5.0 (P2) plants m-2) were studied. Dry biomass and fruit yield per plant were lower in P2 than in P1, but at high plant density the crop compensated for biomass and yield decrease at the plant level. Fruit yield in P2 was greater than that in P1, by 36% in 2004 and 33% in 2005. Water limitation improved quality traits compared with full irrigation. Deficit irrigation, especially in P2, enhanced WUE and allowed a water saving of >45% relative to full irrigation, while keeping high levels of fruit quality. The yield response factor, Ky, which correlates relative fruit yield losses to relative ETc reduction, was higher (0.63) than Kss (0.44), which correlates relative total dry biomass losses to relative ETc reduction, revealing a greater crop sensitivity to soil-water deficit in terms of fruit yield than dry biomass. Therefore, Ky may of use in identifying the plant density at which water productivity is maximised or yield losses are minimised.
2015
Istituto per la Valorizzazione del Legno e delle Specie Arboree - IVALSA - Sede Sesto Fiorentino
deficit irrigation
plant density
processing tomato
water-use efficiency
yield response factor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/259269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact