The recent increase in European temperatures led to a strong enhancement in the occurrence of extremely warm events, with relevant consequences for environment and everyday life. Here, we investigate the evolution of very intense warm and cold events in a south-western European zone during 1961-2007 at a seasonal level. Special attention is given to summertime when warming is the most pronounced. Using a previously developed theoretical model, we discuss how the average properties and long-term trends observed in probability density functions of daily temperatures can explain changes in the frequency of severe, isolated events. In this perspective, the recent intensification of extremely warm events, especially experienced by the Mediterranean zone, is proved to be well consistent with a pure shift of seasonal mean temperatures. On the other hand, any change in the second and higher distributional moments of daily temperatures is ruled out by the data, whereas the average values of these properties, that is, variability and asymmetry, do play a role by shaping the temporal behavior of very intense events.
Increasingly warm summers in the Euro-Mediterranean zone: mean temperatures and extremes
Simolo Claudia;Brunetti Michele;Maugeri Maurizio;Nanni Teresa
2014
Abstract
The recent increase in European temperatures led to a strong enhancement in the occurrence of extremely warm events, with relevant consequences for environment and everyday life. Here, we investigate the evolution of very intense warm and cold events in a south-western European zone during 1961-2007 at a seasonal level. Special attention is given to summertime when warming is the most pronounced. Using a previously developed theoretical model, we discuss how the average properties and long-term trends observed in probability density functions of daily temperatures can explain changes in the frequency of severe, isolated events. In this perspective, the recent intensification of extremely warm events, especially experienced by the Mediterranean zone, is proved to be well consistent with a pure shift of seasonal mean temperatures. On the other hand, any change in the second and higher distributional moments of daily temperatures is ruled out by the data, whereas the average values of these properties, that is, variability and asymmetry, do play a role by shaping the temporal behavior of very intense events.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.