For the monitoring of biological samples, physical parameters such as size, shape and refractive index are of crucial importance. However, up to now the morphological in-vitro analysis of in-vitro cells has been limited to 2D analysis by classical optical microscopy such as phase-contrast or DIC. Here we show an approach that exploits the capability of optical tweezers to trap and put in self-rotation bovine spermatozoa flowing into a microfluidic channel. At same time, digital holographic microscopy allows to image the cell in phase-contrast modality for each different angular position, during the rotation. From the collected information about the cellâ(TM)s phase-contrast signature, we demonstrate that it is possible to reconstruct the 3D shape of the cell and estimate its volume. The method can open new pathways for rapid measurement of in-vitro cells volume in microfluidic lab-on-a-chip platform, thus having access to 3D shape of the object avoiding tomography microscopy, that is an overwhelmed and very complex approach for measuring 3D shape and biovolume estimation. © 2014 SPIE.

3D visualization and biovolume estimation of motile cells by digital holography

Merola F;Miccio L;Memmolo P;Coppola G;
2014

Abstract

For the monitoring of biological samples, physical parameters such as size, shape and refractive index are of crucial importance. However, up to now the morphological in-vitro analysis of in-vitro cells has been limited to 2D analysis by classical optical microscopy such as phase-contrast or DIC. Here we show an approach that exploits the capability of optical tweezers to trap and put in self-rotation bovine spermatozoa flowing into a microfluidic channel. At same time, digital holographic microscopy allows to image the cell in phase-contrast modality for each different angular position, during the rotation. From the collected information about the cellâ(TM)s phase-contrast signature, we demonstrate that it is possible to reconstruct the 3D shape of the cell and estimate its volume. The method can open new pathways for rapid measurement of in-vitro cells volume in microfluidic lab-on-a-chip platform, thus having access to 3D shape of the object avoiding tomography microscopy, that is an overwhelmed and very complex approach for measuring 3D shape and biovolume estimation. © 2014 SPIE.
2014
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Istituto per la Microelettronica e Microsistemi - IMM
Istituto Nazionale di Ottica - INO
9781628410778
Biovolume
Digital Holography
Microfluidics
Optical tweezers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/259400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact