The multidimensional simulation methods, today available for spray motion predictions, solve the spray equations including the mass, momentum and energy changes due to the interaction between the drops and the gas, considering also the collision and coalescence phenomena. As concerns break up, two models are the most commonly used: the TAB one, proposed by O'Rourke and Amsden and based on the Taylor analogy, and the WAVE model, developed by Reitz and Diwaker. Both models need the tuning of some empirical constants. Considering also that the mechanism, that controls atomization, is not yet well understood, it seems that further calculations and experimental comparisons over a range of injection conditions may be useful to improve the prediction capability of these models. Therefore the present paper concerns a sensitivity analysis of the TAB and WAVE models to changes of the empirical constants. The high speed photography and light extinction techniques were adopted to characterize the spray behavior in terms of liquid tip penetration and Sauter Mean Radius. Measurements for comparisons were carried out in a real direct injection (D.I.) diesel engine equipped with two small optical accesses and two endoscopes. Finally, in order to improve the numerical productions, a "hybrid" model is proposed, based on both the TAB and WAVE models. The corresponding tests and results are given.

Fuel jet models for multidimensional Diesel combustion calculation: an update

Beatrice C;Belardini P;Bertoli C;
1995

Abstract

The multidimensional simulation methods, today available for spray motion predictions, solve the spray equations including the mass, momentum and energy changes due to the interaction between the drops and the gas, considering also the collision and coalescence phenomena. As concerns break up, two models are the most commonly used: the TAB one, proposed by O'Rourke and Amsden and based on the Taylor analogy, and the WAVE model, developed by Reitz and Diwaker. Both models need the tuning of some empirical constants. Considering also that the mechanism, that controls atomization, is not yet well understood, it seems that further calculations and experimental comparisons over a range of injection conditions may be useful to improve the prediction capability of these models. Therefore the present paper concerns a sensitivity analysis of the TAB and WAVE models to changes of the empirical constants. The high speed photography and light extinction techniques were adopted to characterize the spray behavior in terms of liquid tip penetration and Sauter Mean Radius. Measurements for comparisons were carried out in a real direct injection (D.I.) diesel engine equipped with two small optical accesses and two endoscopes. Finally, in order to improve the numerical productions, a "hybrid" model is proposed, based on both the TAB and WAVE models. The corresponding tests and results are given.
1995
Istituto Motori - IM - Sede Napoli
Diesel spray
combustion
multidimensional modelling spray models
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/25988
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact