High Concentration photovoltaics systems (HCPV) allow for improved efficiency but, due to Etandue conservation, have low optical acceptance. Mechanical tracking is normally employed to maintain the necessary alignment of the system axis with the sun. This, however, prevents HCPV from integration in urban and residential environments. We propose here optofluidic based approaches to achieve a stationary tracking optical concentrator by internal modifications of the system optics based on the manipulation of liquid interfaces or multiphase systems. Transparency induced by phase transitions and electrophoretic driven mechanisms will be discussed. Theoretical framework, multiphysics modeling and preliminary experimental results will be presented.
Optofluidic approaches to stationary tracking optical concentrator systems
Stefancich Marco;
2013
Abstract
High Concentration photovoltaics systems (HCPV) allow for improved efficiency but, due to Etandue conservation, have low optical acceptance. Mechanical tracking is normally employed to maintain the necessary alignment of the system axis with the sun. This, however, prevents HCPV from integration in urban and residential environments. We propose here optofluidic based approaches to achieve a stationary tracking optical concentrator by internal modifications of the system optics based on the manipulation of liquid interfaces or multiphase systems. Transparency induced by phase transitions and electrophoretic driven mechanisms will be discussed. Theoretical framework, multiphysics modeling and preliminary experimental results will be presented.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


