In Paper I of this series [B. Bouscasse, A. Colagrossi, A. Souto-Iglesias, and J. L. C. Pita, "Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. I. Theoretical formulation and numerical investigation," Phys. Fluids 26, 033103 (2014)], a theoretical and numerical model for a driven pendulum filled with liquid was developed. The system was analyzed in the framework of tuned liquid dampers and hybrid mass liquid dampers (HMLD) theory. In this paper, in order to measure the energy dissipation resulting from shallow water sloshing, an experimental investigation is conducted. Accurate evaluations of energy transfers are obtained through the recorded kinematics of the system. A set of experiments is conducted with three different liquids: water, sunflower oil, and glycerine. Coherently with the results of Paper I, the energy dissipation obtained when the tank is filled with water can mainly be explained by the breaking waves. For all three liquids, the effects of varying the external excitation amplitude are discussed. © 2014 AIP Publishing LLC.

Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. II. experimental investigation

Bouscasse Benjamin;Colagrossi Andrea;
2014

Abstract

In Paper I of this series [B. Bouscasse, A. Colagrossi, A. Souto-Iglesias, and J. L. C. Pita, "Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. I. Theoretical formulation and numerical investigation," Phys. Fluids 26, 033103 (2014)], a theoretical and numerical model for a driven pendulum filled with liquid was developed. The system was analyzed in the framework of tuned liquid dampers and hybrid mass liquid dampers (HMLD) theory. In this paper, in order to measure the energy dissipation resulting from shallow water sloshing, an experimental investigation is conducted. Accurate evaluations of energy transfers are obtained through the recorded kinematics of the system. A set of experiments is conducted with three different liquids: water, sunflower oil, and glycerine. Coherently with the results of Paper I, the energy dissipation obtained when the tank is filled with water can mainly be explained by the breaking waves. For all three liquids, the effects of varying the external excitation amplitude are discussed. © 2014 AIP Publishing LLC.
2014
Istituto di iNgegneria del Mare - INM (ex INSEAN)
sloshing flows
dissipation
breaking waves
viscous effects
TLD
Tune Liquid Dampers
Smoothed Particle Hydrodynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/260183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? ND
social impact