Electric field-modulated photoluminescence (EML) measurements are presented for vacuum-evaporated films of cyclometallated Pt (II) complexes of 1,3-di(2-pyridyl) benzenes used as triplet emitters in organic light-emitting diodes (OLEDs). The excimer phosphorescence is quenched by the external electric field of 2.5 MV/cm up to 25% but the same effect on monomer phosphorescence is one order of magnitude smaller. The higher quenching effect for triplet excimers than triplet monomers in solid films of Pt complexes is rationalized assuming excimers to be populated within excimer-active domains of the films through an intermediate stage of geminate (e-h) pairs derived from dissociated monomer excitons. The EML data for excimers are successfully described in the framework of Sano-Tachiya-Noolandi-Hong (STNH) theory of geminate (e-h) pair recombination where the final recombination step (e-h capture) proceeds on a sphere of finite radius (a) with a finite speed. The conventional Onsager theory (a = 0) is sufficient to explain the EML quenching effect for monomers. The results are important for explaining the decrease of electroluminescence quantum efficiency observed in OLEDs working under high electric fields.

Electromodulation of monomer and excimer phosphorescence in vacuum-evaporated films of platinum (II) complexes of 1,3-di(2-pyridyl)benzenes

Mroz W;
2013

Abstract

Electric field-modulated photoluminescence (EML) measurements are presented for vacuum-evaporated films of cyclometallated Pt (II) complexes of 1,3-di(2-pyridyl) benzenes used as triplet emitters in organic light-emitting diodes (OLEDs). The excimer phosphorescence is quenched by the external electric field of 2.5 MV/cm up to 25% but the same effect on monomer phosphorescence is one order of magnitude smaller. The higher quenching effect for triplet excimers than triplet monomers in solid films of Pt complexes is rationalized assuming excimers to be populated within excimer-active domains of the films through an intermediate stage of geminate (e-h) pairs derived from dissociated monomer excitons. The EML data for excimers are successfully described in the framework of Sano-Tachiya-Noolandi-Hong (STNH) theory of geminate (e-h) pair recombination where the final recombination step (e-h capture) proceeds on a sphere of finite radius (a) with a finite speed. The conventional Onsager theory (a = 0) is sufficient to explain the EML quenching effect for monomers. The results are important for explaining the decrease of electroluminescence quantum efficiency observed in OLEDs working under high electric fields.
2013
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
Electromodulation
photoluminescence
phosphorescence
excimers
exciton dissociation
Onsager model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/260263
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact