The major part of cognitive tasks applied to zebrafish has not fully assessed their attentional ability, a process by which the nervous system learns, organizes sensory input and generates coordinated behaviour. In an attempt to maximize the value of zebrafish as an animal model of cognition, we tested the possibility to apply a modified version of novel object recognition test named virtual object recognition test (VORT) using 2D geometrical shapes (square, triangle, circle, cross, etc.) on two iPod 3.5-inch widescreen displays, located on two opposite walls of the water tank. Each fish was subjected to a familiarization trial (T-1), and after different time delays (from 5 min to 96 h) to a novel shape recognition trial (T-2). A progressive decrease, across time, of memory performance, in terms of mean discrimination index and mean exploration time, was shown. The predictive validity was tested using cholinergic drugs. Nicotine (0.02 mg/kg intraperitoneally, IP) significantly increased, while scopolamine (0.025 mg/kg IP) and mecamylamine decreased, mean discrimination index. Zebrafish discriminated different movements (vertical, horizontal, oblique) and the discrimination index increased significantly when moving poorly discriminated shapes were presented, thus increasing visual attention. Taken together these findings demonstrate that VORT is a viable, fast and useful model to evaluate sustained attention in zebrafish and for predicting the efficacy of pharmacotherapies for cognitive disorders. (C) 2014 Elsevier Inc. All rights reserved.

A new model to study visual attention in zebrafish

Sala Mariaelvina
2014

Abstract

The major part of cognitive tasks applied to zebrafish has not fully assessed their attentional ability, a process by which the nervous system learns, organizes sensory input and generates coordinated behaviour. In an attempt to maximize the value of zebrafish as an animal model of cognition, we tested the possibility to apply a modified version of novel object recognition test named virtual object recognition test (VORT) using 2D geometrical shapes (square, triangle, circle, cross, etc.) on two iPod 3.5-inch widescreen displays, located on two opposite walls of the water tank. Each fish was subjected to a familiarization trial (T-1), and after different time delays (from 5 min to 96 h) to a novel shape recognition trial (T-2). A progressive decrease, across time, of memory performance, in terms of mean discrimination index and mean exploration time, was shown. The predictive validity was tested using cholinergic drugs. Nicotine (0.02 mg/kg intraperitoneally, IP) significantly increased, while scopolamine (0.025 mg/kg IP) and mecamylamine decreased, mean discrimination index. Zebrafish discriminated different movements (vertical, horizontal, oblique) and the discrimination index increased significantly when moving poorly discriminated shapes were presented, thus increasing visual attention. Taken together these findings demonstrate that VORT is a viable, fast and useful model to evaluate sustained attention in zebrafish and for predicting the efficacy of pharmacotherapies for cognitive disorders. (C) 2014 Elsevier Inc. All rights reserved.
2014
Istituto di Neuroscienze - IN -
Cholinergic system
Learning and memory
Moving shapes
Teleost
Visual attention
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/260490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 47
social impact