The optimization of diesel engine performance and emissions can be achieved through a better understanding of the in-cylinder combustion process. Advanced non-intrusive optical techniques are providing new tools for investigating the thermo-fluid dynamics processes as well as they are contributing to develop predictive models for DI diesel combustion. High-speed images of spray and flame evolution as well as UV-visible chemiluminescence measurements were carried out in an optical 0.5-liter, single-cylinder, four-stroke, direct- injection diesel engine equipped with a prototype four valves cylinder head and a fully flexible CR injection system. In order to evaluate the effect of different injection strategies on the combustion process, measurements were performed varying injection parameters. The ignition location and time were individuated by combustion visualization and detection of radical species, obtained by chemiluminescence measurements. The spectral features of broadband flame emission characterized soot formation and its evolution.
In-cylinder optical analysis of CRDI diesel engine combustion
Esposito Corcione F;Merola SS;Vaglieco BM;
2001
Abstract
The optimization of diesel engine performance and emissions can be achieved through a better understanding of the in-cylinder combustion process. Advanced non-intrusive optical techniques are providing new tools for investigating the thermo-fluid dynamics processes as well as they are contributing to develop predictive models for DI diesel combustion. High-speed images of spray and flame evolution as well as UV-visible chemiluminescence measurements were carried out in an optical 0.5-liter, single-cylinder, four-stroke, direct- injection diesel engine equipped with a prototype four valves cylinder head and a fully flexible CR injection system. In order to evaluate the effect of different injection strategies on the combustion process, measurements were performed varying injection parameters. The ignition location and time were individuated by combustion visualization and detection of radical species, obtained by chemiluminescence measurements. The spectral features of broadband flame emission characterized soot formation and its evolution.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.