This paper presents a novel approach to the discovery of predictive process models, which are meant to support the run-time prediction of some performance indicator (e.g., the remaining processing time) on new ongoing process instances. To this purpose, we combine a series of data mining techniques (ranging from pattern mining, to non-parametric regression and to predictive clustering) with ad-hoc data transformation and abstraction mechanisms. As a result, a modular representation of the process is obtained, where different performancerelevant variants of it are provided with separate regression models, and discriminated on the basis of context information. Notably, the approach is capable to look at the given log traces at a proper level of abstraction, in a pretty automatic and transparent fashion, which reduces the need for heavy intervention by the analyst (which is, indeed, a major drawback of previous solutions in the literature). The approach has been validated on a real application scenario, with satisfactory results, in terms of both prediction accuracy and robustness.

A data-adaptive trace abstraction approach to the prediction of business process performances

Folino Francesco;Guarascio Massimo;Pontieri Luigi
2013

Abstract

This paper presents a novel approach to the discovery of predictive process models, which are meant to support the run-time prediction of some performance indicator (e.g., the remaining processing time) on new ongoing process instances. To this purpose, we combine a series of data mining techniques (ranging from pattern mining, to non-parametric regression and to predictive clustering) with ad-hoc data transformation and abstraction mechanisms. As a result, a modular representation of the process is obtained, where different performancerelevant variants of it are provided with separate regression models, and discriminated on the basis of context information. Notably, the approach is capable to look at the given log traces at a proper level of abstraction, in a pretty automatic and transparent fashion, which reduces the need for heavy intervention by the analyst (which is, indeed, a major drawback of previous solutions in the literature). The approach has been validated on a real application scenario, with satisfactory results, in terms of both prediction accuracy and robustness.
2013
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
9789898565594
Business process analysis
Clustering
Data mining
Regression
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/261111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact