We report on the transmission of a terahertz (THz) radiation through prototype structures based on a p-type silicon substrate. In particular, the bare substrate and progressively more complicated multilayer structures were investigated, allowing to address the effect on the transmission of different factors, such as the orientation of interdigitated contacts with respect to the polarized beam, the temperature, and the current flowing through a conductive SnO2 nanorods layer. A suitable experimental set-up was developed for the direct spectral measurement of transmission in the range of 0.75-1.1 THz at room and low temperatures. A simple Drude-Lorentz model was formulated, finding a quantitative agreement with the experimental transmission spectrum of the bare substrate at room temperature. For the multilayer structures, the spectra variations observed with temperature are well accounted by the corresponding change of the mobility of holes in the silicon p-type substrate. The influence of the contact orientation is consistent with that of a polarizing metallic grating. Finally, Joule heating effects are observed in the spectra performed as a function of the current flowing through the SnO2 nanorods layer. The experimental results shown here, together with their theoretical interpretation, provide insights for the development of devices fabricated on conductive substrates aimed to absorb/modulate radiation in the THz range. (C) 2014 AIP Publishing LLC.

On the transmission of terahertz radiation through silicon-based structures

Persano Anna;Francioso Luca;Cola Adriano
2014

Abstract

We report on the transmission of a terahertz (THz) radiation through prototype structures based on a p-type silicon substrate. In particular, the bare substrate and progressively more complicated multilayer structures were investigated, allowing to address the effect on the transmission of different factors, such as the orientation of interdigitated contacts with respect to the polarized beam, the temperature, and the current flowing through a conductive SnO2 nanorods layer. A suitable experimental set-up was developed for the direct spectral measurement of transmission in the range of 0.75-1.1 THz at room and low temperatures. A simple Drude-Lorentz model was formulated, finding a quantitative agreement with the experimental transmission spectrum of the bare substrate at room temperature. For the multilayer structures, the spectra variations observed with temperature are well accounted by the corresponding change of the mobility of holes in the silicon p-type substrate. The influence of the contact orientation is consistent with that of a polarizing metallic grating. Finally, Joule heating effects are observed in the spectra performed as a function of the current flowing through the SnO2 nanorods layer. The experimental results shown here, together with their theoretical interpretation, provide insights for the development of devices fabricated on conductive substrates aimed to absorb/modulate radiation in the THz range. (C) 2014 AIP Publishing LLC.
2014
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/261165
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact