The ultrasmall size and unique properties of polymeric nanoparticles (NPs) have led to raising concerns about their potential cyto- and genotoxicity on biological systems. Polyethylenimine (PEI) is a highly positive charged polymer and is known to have varying degree of toxic effect to cells based on its chemical structure (i.e., amount of primary and secondary amine).Herein, drug delivery carriers such as PEI-PLGA nanoparticles (PEI-NPs) and acetylated PEI-PLGA nanoparticles (AcPEI-NPs) were utilized to examine the effect of acetylation on NPs biocompatibility and genotoxicity, using human primary cells as in vitro model.Cell uptake of NPs was characterized along with their effects on cellular viability. The results indicate that both NPs showed an equivalent behavior in terms of uptake and biocompatibility. In depth analysis of NP uptake on cell biology evidenced that these nanoparticles induced dose dependant genotoxic effects. This phenomenon was significantly reduced by PEI acetylation. Endocytosed PEI-NPs trigger an oxidative stress on cells by inducing the production of reactive oxygen species (ROS), which cause DNA damage without apparently affecting cell viability. Thus, the genotoxicity of nanoparticles, that could be used as non-viral drug carriers, should be evaluated based on the intracellular level of ROS generation and DNA damage even in absence of a significant cell death. © 2013 Elsevier Ireland Ltd.

The genotoxicity of PEI-based nanoparticles is reduced by acetylation of polyethylenimine amines in human primary cells

Calarco A;Margarucci S;Petillo O;Peluso G
2013

Abstract

The ultrasmall size and unique properties of polymeric nanoparticles (NPs) have led to raising concerns about their potential cyto- and genotoxicity on biological systems. Polyethylenimine (PEI) is a highly positive charged polymer and is known to have varying degree of toxic effect to cells based on its chemical structure (i.e., amount of primary and secondary amine).Herein, drug delivery carriers such as PEI-PLGA nanoparticles (PEI-NPs) and acetylated PEI-PLGA nanoparticles (AcPEI-NPs) were utilized to examine the effect of acetylation on NPs biocompatibility and genotoxicity, using human primary cells as in vitro model.Cell uptake of NPs was characterized along with their effects on cellular viability. The results indicate that both NPs showed an equivalent behavior in terms of uptake and biocompatibility. In depth analysis of NP uptake on cell biology evidenced that these nanoparticles induced dose dependant genotoxic effects. This phenomenon was significantly reduced by PEI acetylation. Endocytosed PEI-NPs trigger an oxidative stress on cells by inducing the production of reactive oxygen species (ROS), which cause DNA damage without apparently affecting cell viability. Thus, the genotoxicity of nanoparticles, that could be used as non-viral drug carriers, should be evaluated based on the intracellular level of ROS generation and DNA damage even in absence of a significant cell death. © 2013 Elsevier Ireland Ltd.
2013
DNA damage
Genotoxicity
Nanoparticles
Reactive oxygen species
Transfection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/261212
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? ND
social impact