Kinetic analysis of the olive pomace thermal degradation in the temperature range of interest for torrefaction was performed by using non-isothermal thermogravimetric measurements at different heating rates, ranging from 2 to 40 degrees C/min. A comparison is presented between two selected integral isoconversional methods, i.e., the nonlinear Vyazovkin incremental approach, which is more accurate but time-consuming, and the linear Ozawa-Flynn-Wall (OFW) method, which is less accurate but computationally simpler. Results show that the values of the activation energy by the OFW method are consistent with the ones provided by the Vyazovkin approach. This implies that the OFW method, more user-friendly compared to the Vyazovkin procedure, is suitable for studying the torrefaction kinetics of residual biomass, such as olive pomace. The reliability of the OFW method was further confirmed by the successful application of the derived kinetic data to reproduce (i.e., predict) experimental TG curves not included in the kinetic computations. (C) 2014 Elsevier B.V. All rights reserved.

Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating conditions

Brachi Paola;Miccio Francesco;Ruoppolo Giovanna
2015

Abstract

Kinetic analysis of the olive pomace thermal degradation in the temperature range of interest for torrefaction was performed by using non-isothermal thermogravimetric measurements at different heating rates, ranging from 2 to 40 degrees C/min. A comparison is presented between two selected integral isoconversional methods, i.e., the nonlinear Vyazovkin incremental approach, which is more accurate but time-consuming, and the linear Ozawa-Flynn-Wall (OFW) method, which is less accurate but computationally simpler. Results show that the values of the activation energy by the OFW method are consistent with the ones provided by the Vyazovkin approach. This implies that the OFW method, more user-friendly compared to the Vyazovkin procedure, is suitable for studying the torrefaction kinetics of residual biomass, such as olive pomace. The reliability of the OFW method was further confirmed by the successful application of the derived kinetic data to reproduce (i.e., predict) experimental TG curves not included in the kinetic computations. (C) 2014 Elsevier B.V. All rights reserved.
2015
Istituto di Ricerche sulla Combustione - IRC - Sede Napoli
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Kinetic analysis
Bio-waste
Torrefaction
Thermogravimetric analysis
Isoconversional method
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/261213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 78
social impact