The Entity Linking (EL) problem consists in automatically linking short fragments of text within a document to entities in a given Knowledge Base like Wikipedia. Due to its impact in several text-understanding related tasks, EL is an hot research topic. The correlated problem of devising the most relevant entities mentioned in the document, a.k.a. salient entities (SE), is also attracting increasing interest. Unfortunately, publicly available evaluation datasets that contain accurate and supervised knowledge about mentioned entities and their relevance ranking are currently very poor both in number and quality. This lack makes very difficult to compare different EL and SE solutions on a fair basis, as well as to devise innovative techniques that relies on these datasets to train machine learning models, in turn used to automatically link and rank entities. In this demo paper we propose a Web-deployed tool that allows to crowdsource the creation of these datasets, by sup- porting the collaborative human annotation of semi-structured documents. The tool, called Elianto, is actually an open source framework, which provides a user friendly and re- active Web interface to support both EL and SE labelling tasks, through a guided two-step process.
Manual annotation of semi-structured documents for entity-linking
Lucchese C;Orlando S;Perego R;Trani S
2014
Abstract
The Entity Linking (EL) problem consists in automatically linking short fragments of text within a document to entities in a given Knowledge Base like Wikipedia. Due to its impact in several text-understanding related tasks, EL is an hot research topic. The correlated problem of devising the most relevant entities mentioned in the document, a.k.a. salient entities (SE), is also attracting increasing interest. Unfortunately, publicly available evaluation datasets that contain accurate and supervised knowledge about mentioned entities and their relevance ranking are currently very poor both in number and quality. This lack makes very difficult to compare different EL and SE solutions on a fair basis, as well as to devise innovative techniques that relies on these datasets to train machine learning models, in turn used to automatically link and rank entities. In this demo paper we propose a Web-deployed tool that allows to crowdsource the creation of these datasets, by sup- porting the collaborative human annotation of semi-structured documents. The tool, called Elianto, is actually an open source framework, which provides a user friendly and re- active Web interface to support both EL and SE labelling tasks, through a guided two-step process.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_294417-doc_84518.pdf
solo utenti autorizzati
Descrizione: Manual annotation of semi-structured documents for entity-linking
Tipologia:
Versione Editoriale (PDF)
Dimensione
439.06 kB
Formato
Adobe PDF
|
439.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


