The behaviour of two combustion chambers, a toroidal and a turbulent one, has been compared. The engine performance in terms of imep and exhaust emissions were measured. Laser Doppler Anemometry technique was used to characterize the fluids dynamic aspect of combustion system. The axial asymmetry introduced in combustion chamber shape causes strong differences in the air flow field at the end of compression stroke. The tangential velocity profile is flattened to that obtained with toroidal chamber. Moreover the rms values of tangential velocity measured in turbulent combustion chamber are about three times higher than that measured in the toroidal chamber. At low engine speed the turbulent chamber allows to operate with low NOx levels without penalties of smoke emissions and fuel consumption as happens by using conventional toroidal chamber.
Effect of combustion chamber shape on air flow field in a d.i. Diesel engine
Bertoli C;Esposito Corcione F;Police G;Valentino G
1987
Abstract
The behaviour of two combustion chambers, a toroidal and a turbulent one, has been compared. The engine performance in terms of imep and exhaust emissions were measured. Laser Doppler Anemometry technique was used to characterize the fluids dynamic aspect of combustion system. The axial asymmetry introduced in combustion chamber shape causes strong differences in the air flow field at the end of compression stroke. The tangential velocity profile is flattened to that obtained with toroidal chamber. Moreover the rms values of tangential velocity measured in turbulent combustion chamber are about three times higher than that measured in the toroidal chamber. At low engine speed the turbulent chamber allows to operate with low NOx levels without penalties of smoke emissions and fuel consumption as happens by using conventional toroidal chamber.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.