We propose an extension of a neural-based background subtraction approach to moving object detection to the case of image sequences taken from pan-tilt-zoom (PTZ) cameras. The background model automatically adapts in a self-organizing way to changes in the scene background. Background variations arising in a usual stationary camera setting, such as those due to gradual illumination changes, to waving trees, or to shadows cast by moving objects, are accurately handled by the neural self-organizing background model originally proposed for this type of setting. Handling of variations due to the PTZ camera movement is ensured by a novel registration mechanism that allows the neural background model to automatically compensate the eventual ego-motion, estimated at each time instant. Experimental results on several real image sequences and comparisons with seven state-of-the-art methods demonstrate the accuracy of the proposed approach.

Neural Background Subtraction for Pan-Tilt-Zoom Cameras

Maddalena Lucia
2014

Abstract

We propose an extension of a neural-based background subtraction approach to moving object detection to the case of image sequences taken from pan-tilt-zoom (PTZ) cameras. The background model automatically adapts in a self-organizing way to changes in the scene background. Background variations arising in a usual stationary camera setting, such as those due to gradual illumination changes, to waving trees, or to shadows cast by moving objects, are accurately handled by the neural self-organizing background model originally proposed for this type of setting. Handling of variations due to the PTZ camera movement is ensured by a novel registration mechanism that allows the neural background model to automatically compensate the eventual ego-motion, estimated at each time instant. Experimental results on several real image sequences and comparisons with seven state-of-the-art methods demonstrate the accuracy of the proposed approach.
2014
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Artificial neural network
background subtraction
motion detection
PTZ camera
self organization
video surveillance
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/261701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 40
social impact