A squaraine dye functionalized with a bulky trialkoxy phenyl moiety through a flexible diamide linkage (GA-SQ) capable of undergoing self-assembly has been synthesized and fully characterized. Rapid cooling of a hot solution of GA-SQ to 0 degrees C results in self-assembled precipitates consisting of two types of nanostructures, rings and ill-defined short fibers. The application of ultrasound modifies the conditions for the supersaturation-mediated nucleation, generating only one kind of nuclei and prompting the formation of crystalline fibrous structures, inducing gelation of solvent molecules. The unique self-assembling behavior of GA-SQ under ultrasound stimulus has been investigated in detail by using absorption, emission, FT-IR, XRD, SEM, AFM and TEM techniques. These studies reveal a nucleation growth mechanism of the self-assembled material, an aspect rarely scrutinized in the area of sonication-induced gelation. Furthermore, in order to probe the effects of nanoscale substrates on the sonication-induced self-assembly, a minuscule amount of single-walled carbon nanotubes was added, which leads to acceleration of the self-assembly through a heterogeneous nucleation process that ultimately affords a supramolecular gel with nanotape-like morphology. This study demonstrates that self-assembly of functional dyes can be judiciously manipulated by an external stimulus and can be further controlled by the addition of carbon nanotubes.

Ultrasound Stimulated Nucleation and Growth of a Dye Assembly into Extended Gel Nanostructures

-
2013

Abstract

A squaraine dye functionalized with a bulky trialkoxy phenyl moiety through a flexible diamide linkage (GA-SQ) capable of undergoing self-assembly has been synthesized and fully characterized. Rapid cooling of a hot solution of GA-SQ to 0 degrees C results in self-assembled precipitates consisting of two types of nanostructures, rings and ill-defined short fibers. The application of ultrasound modifies the conditions for the supersaturation-mediated nucleation, generating only one kind of nuclei and prompting the formation of crystalline fibrous structures, inducing gelation of solvent molecules. The unique self-assembling behavior of GA-SQ under ultrasound stimulus has been investigated in detail by using absorption, emission, FT-IR, XRD, SEM, AFM and TEM techniques. These studies reveal a nucleation growth mechanism of the self-assembled material, an aspect rarely scrutinized in the area of sonication-induced gelation. Furthermore, in order to probe the effects of nanoscale substrates on the sonication-induced self-assembly, a minuscule amount of single-walled carbon nanotubes was added, which leads to acceleration of the self-assembly through a heterogeneous nucleation process that ultimately affords a supramolecular gel with nanotape-like morphology. This study demonstrates that self-assembly of functional dyes can be judiciously manipulated by an external stimulus and can be further controlled by the addition of carbon nanotubes.
2013
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
gels
hybrid materials
nucleation and growth
sonication
squaraine
LANGMUIR-BLODGETT-FILMS
PI-CONJUGATED SYSTEMS
INDUCED EMISSION ENHANCEMENT
HETEROJUNCTION SOLAR-CELLS
SOFT FUNCTIONAL MATERIALS
WALLED CARBON NANOTUBES
SQUARAINE DYES
SUPRAMOLECULAR GELS
INDUCED GELATION
QUINACRIDONE DERIVATIVES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/262329
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 80
social impact