By using fluid-kinetic simulations of confined and concentrated emulsion droplets, we investigate the nature of space non-homogeneity in soft-glassy dynamics and provide quantitative measurements of the statistical features of plastic events in the proximity of the yield-stress threshold. Above the yield stress, our results show the existence of a finite stress correlation scale, which can be mapped directly onto the cooperativity scale, recently introduced in the literature to capture non-local effects in the soft-glassy dynamics. In this regime, the emergence of a separate boundary (wall) rheology with higher fluidity than the bulk is highlighted in terms of near-wall spontaneous segregation of plastic events. Near the yield stress, where the cooperativity scale cannot be estimated with sufficient accuracy, the system shows a clear increase of the stress correlation scale, whereas plastic events exhibit intermittent clustering in time, with no preferential spatial location. A quantitative measurement of the space-time correlation associated with the motion of the interface of the droplets is key to spot the elastic rigidity of the system. This journal is © the Partner Organisations 2014.

Direct evidence of plastic events and dynamic heterogeneities in soft-glasses

Bernaschi M;Succi S;Toschi F
2014

Abstract

By using fluid-kinetic simulations of confined and concentrated emulsion droplets, we investigate the nature of space non-homogeneity in soft-glassy dynamics and provide quantitative measurements of the statistical features of plastic events in the proximity of the yield-stress threshold. Above the yield stress, our results show the existence of a finite stress correlation scale, which can be mapped directly onto the cooperativity scale, recently introduced in the literature to capture non-local effects in the soft-glassy dynamics. In this regime, the emergence of a separate boundary (wall) rheology with higher fluidity than the bulk is highlighted in terms of near-wall spontaneous segregation of plastic events. Near the yield stress, where the cooperativity scale cannot be estimated with sufficient accuracy, the system shows a clear increase of the stress correlation scale, whereas plastic events exhibit intermittent clustering in time, with no preferential spatial location. A quantitative measurement of the space-time correlation associated with the motion of the interface of the droplets is key to spot the elastic rigidity of the system. This journal is © the Partner Organisations 2014.
2014
Istituto Applicazioni del Calcolo ''Mauro Picone''
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/262552
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact