The spatial distribution and diversity of metal-reducing bacterial assemblages belonging to Geobacteraceae were studied in groundwaters with different physicochemical characteristics by means of terminal-restriction fragment length polymorphism (T-RFLP) molecular fingerprinting, as applied to the 16S rRNA gene. The physicochemical conditions of these environments were unfavorable to support active-metal-reducing processes. The highest diversity of Geobacteraceae was observed in groundwater samples characterized by the highest dissolved Fe and Mn concentrations. T-RFLP analyses revealed major differences in the Geobacteraceae ribotype diversity and community composition of the groundwater samples as well as a considerable variability and spatial turnover of Geobacteraceae assemblages. Results from this work suggest that changes in the physicochemical characteristics of the aquifer deeply influence the richness and community structure of Geobacteraceae, even in those systems in which metal-reduction processes are not dominant. [Int Microbiol 2009; 12(3):153-159]

Diversity and spatial distribution of metal-reducing bacterial assemblages in groundwaters of different redox conditions

Luna Gian M;
2009

Abstract

The spatial distribution and diversity of metal-reducing bacterial assemblages belonging to Geobacteraceae were studied in groundwaters with different physicochemical characteristics by means of terminal-restriction fragment length polymorphism (T-RFLP) molecular fingerprinting, as applied to the 16S rRNA gene. The physicochemical conditions of these environments were unfavorable to support active-metal-reducing processes. The highest diversity of Geobacteraceae was observed in groundwater samples characterized by the highest dissolved Fe and Mn concentrations. T-RFLP analyses revealed major differences in the Geobacteraceae ribotype diversity and community composition of the groundwater samples as well as a considerable variability and spatial turnover of Geobacteraceae assemblages. Results from this work suggest that changes in the physicochemical characteristics of the aquifer deeply influence the richness and community structure of Geobacteraceae, even in those systems in which metal-reduction processes are not dominant. [Int Microbiol 2009; 12(3):153-159]
2009
Istituto di Scienze Marine - ISMAR
Geobacteraceae
metal-reducing bacteria
manganese-iron in aquifers
groundwater
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/262680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 11
social impact