A non-invasive technique for posture classification suitable to be used in several in-home scenarios is proposed and preliminary validation results are presented. 3D point cloud sequences were acquired using a single time-of-flight sensor working in a privacy preserving modality and they were processed with a low power embedded PC. In order to satisfy different application requirements (e.g. covered distance range, processing speed and discrimination capabilities), a twofold discrimination approach was investigated in which features were hierarchically arranged from coarse to fine by exploiting both topological and volumetric representations. The topological representation encoded the intrinsic topology of the body's shape using a skeleton-based structure, thus guaranteeing invariance to scale, rotations and postural changes and achieving a high level of detail with a moderate computational cost. On the other hand, using the volumetric representation features were described in terms of 3D cylindrical histograms working within a wider range of distances in a faster way and also guaranteeing good invariance properties. The discrimination capabilities were evaluated in four different real-home scenarios related with the fields of ambient assisted living and homecare, namely "dangerous event detection", "anomalous behaviour detection", "activities recognition" and "natural human-ambient interaction". For each mentioned scenario, the discrimination capabilities were evaluated in terms of invariance to viewpoint changes, representation capabilities and classification performance, achieving promising results. The two feature representation approaches exhibited complementary characteristics showing high reliability with classification rates greater than 97%. © 2013 Elsevier B.V.

In-home hierarchical posture classification with a time-of-flight 3D sensor

Diraco Giovanni;Leone Alessandro;Siciliano Pietro
2014

Abstract

A non-invasive technique for posture classification suitable to be used in several in-home scenarios is proposed and preliminary validation results are presented. 3D point cloud sequences were acquired using a single time-of-flight sensor working in a privacy preserving modality and they were processed with a low power embedded PC. In order to satisfy different application requirements (e.g. covered distance range, processing speed and discrimination capabilities), a twofold discrimination approach was investigated in which features were hierarchically arranged from coarse to fine by exploiting both topological and volumetric representations. The topological representation encoded the intrinsic topology of the body's shape using a skeleton-based structure, thus guaranteeing invariance to scale, rotations and postural changes and achieving a high level of detail with a moderate computational cost. On the other hand, using the volumetric representation features were described in terms of 3D cylindrical histograms working within a wider range of distances in a faster way and also guaranteeing good invariance properties. The discrimination capabilities were evaluated in four different real-home scenarios related with the fields of ambient assisted living and homecare, namely "dangerous event detection", "anomalous behaviour detection", "activities recognition" and "natural human-ambient interaction". For each mentioned scenario, the discrimination capabilities were evaluated in terms of invariance to viewpoint changes, representation capabilities and classification performance, achieving promising results. The two feature representation approaches exhibited complementary characteristics showing high reliability with classification rates greater than 97%. © 2013 Elsevier B.V.
2014
Istituto per la Microelettronica e Microsistemi - IMM
Active vision
Ambient assisted living
Human posture recognition
In-home monitoring
Time-of-flight sensor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/262776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact