Wear of ultra-high molecular weight polyethylene (UHMWPE) has been recognized as the main cause for long-term revision in joint arthroplasty. A new approach to overcome this detrimental issue is here presented: zirconia (ZrO2) thin films were directly deposited onto the surface of UHMWPE by Pulsed Plasma Deposition (PPD) technique. The obtained films were structurally, morphologically and mechanically characterized by X-ray diffraction, scanning electron microscopy and nanoindentation tests, respectively. The critical fracture load was estimated by the analysis of the indenter footprints, while the adhesion degree was evaluated by a cross-cut tape test. Zirconia films exhibited a fully cubic structure, with densely packed grains, whereas mechanical tests showed that hard, tough and well-adherent films were deposited. These preliminary results suggested the feasibility of pursuing this alternative route to improve UHMPWE performances while preserving its well-established mechanical properties.

Pulsed plasma deposition of zirconia thin films on UHMWPE: proof of concept of a novel approach for joint prosthetic implants

Sprio Simone;
2013

Abstract

Wear of ultra-high molecular weight polyethylene (UHMWPE) has been recognized as the main cause for long-term revision in joint arthroplasty. A new approach to overcome this detrimental issue is here presented: zirconia (ZrO2) thin films were directly deposited onto the surface of UHMWPE by Pulsed Plasma Deposition (PPD) technique. The obtained films were structurally, morphologically and mechanically characterized by X-ray diffraction, scanning electron microscopy and nanoindentation tests, respectively. The critical fracture load was estimated by the analysis of the indenter footprints, while the adhesion degree was evaluated by a cross-cut tape test. Zirconia films exhibited a fully cubic structure, with densely packed grains, whereas mechanical tests showed that hard, tough and well-adherent films were deposited. These preliminary results suggested the feasibility of pursuing this alternative route to improve UHMPWE performances while preserving its well-established mechanical properties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/262850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 22
social impact