We introduce separation margin maximization, a characteristic of the Support Vector Machine technique, into the approach to binary classification based on polyhedral separability and we adopt a semisupervised classification framework. In particular, our model aims at separating two finite and disjoint sets of points by means of a polyhedral surface in the semisupervised case, that is, by exploiting information coming from both labeled and unlabeled samples. Our formulation requires the minimization of a nonconvex nondifferentiable error function. Numerical results are presented on several data sets drawn from the literature.

Support Vector Machine polyhedral separability in semisupervised learning

A Astorino;
2015

Abstract

We introduce separation margin maximization, a characteristic of the Support Vector Machine technique, into the approach to binary classification based on polyhedral separability and we adopt a semisupervised classification framework. In particular, our model aims at separating two finite and disjoint sets of points by means of a polyhedral surface in the semisupervised case, that is, by exploiting information coming from both labeled and unlabeled samples. Our formulation requires the minimization of a nonconvex nondifferentiable error function. Numerical results are presented on several data sets drawn from the literature.
2015
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
SVM
Semisupervised classification
Transductive SVM
Polyhedral separability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/263043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 27
social impact