The grand aim of the Integrated Tokamak Modelling (ITM) task-force is to provide a flexible, modular and reliable plasma simulator in view of planning and analyzing ITER discharges. Since radio-frequency (rf) heating in the ion cyclotron range of frequencies (ICRF) is foreseen as one of the main additional heating systems in ITER, physics modules that simulate ICRF wave propagation and absorption are necessary for the ITM project. Here, we report on the status of the benchmark activity of ICRF codes, already imported in ITM environment platform. We consider various scenarios for ITER, limiting the comparisons to wave propagation and absorption in Maxwellian plasmas. © 2014 American Institute of Physics

ICRF-code benchmark activity in the framework of the European task-force on integrated Tokamak Modelling

-
2014

Abstract

The grand aim of the Integrated Tokamak Modelling (ITM) task-force is to provide a flexible, modular and reliable plasma simulator in view of planning and analyzing ITER discharges. Since radio-frequency (rf) heating in the ion cyclotron range of frequencies (ICRF) is foreseen as one of the main additional heating systems in ITER, physics modules that simulate ICRF wave propagation and absorption are necessary for the ITM project. Here, we report on the status of the benchmark activity of ICRF codes, already imported in ITM environment platform. We consider various scenarios for ITER, limiting the comparisons to wave propagation and absorption in Maxwellian plasmas. © 2014 American Institute of Physics
2014
Istituto di fisica del plasma - IFP - Sede Milano
978-0-7354-1210-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/263112
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact