A reciprocating probe head with six pins was used for localized measurements of electric fields and densities in the scrape-off layer (SOL) of ASDEX Upgrade (AUG) up to the edge shear layer (SL) near the Last Closed Flux Surface (LCFS). The edge SL is characterized by a strong sudden change in the poloidal velocity v close to the separatrix. The probes were used to determine this velocity by different methods which are critically compared to each other concerning their reliability. By the first method the poloidal velocity was deduced from the radial electric field E-r measured by two radially staggered probe pins, with v being due to the E-r x B-phi-drift (B-phi is the toroidal field). The two other methods utilized the cross correlation of two poloidally staggered ion-biased probes and two poloidally staggered floating probes, respectively. In this case the time lags with maximum cross correlation were used to determine the poloidal velocity and its jump, yielding comparable results to the first method. Also the method of conditional averaging was applied to the latter signals.

Electric Probe Measurements of the Poloidal Velocity in the Scrape-Off Layer of ASDEX Upgrade

Vianello N;
2014

Abstract

A reciprocating probe head with six pins was used for localized measurements of electric fields and densities in the scrape-off layer (SOL) of ASDEX Upgrade (AUG) up to the edge shear layer (SL) near the Last Closed Flux Surface (LCFS). The edge SL is characterized by a strong sudden change in the poloidal velocity v close to the separatrix. The probes were used to determine this velocity by different methods which are critically compared to each other concerning their reliability. By the first method the poloidal velocity was deduced from the radial electric field E-r measured by two radially staggered probe pins, with v being due to the E-r x B-phi-drift (B-phi is the toroidal field). The two other methods utilized the cross correlation of two poloidally staggered ion-biased probes and two poloidally staggered floating probes, respectively. In this case the time lags with maximum cross correlation were used to determine the poloidal velocity and its jump, yielding comparable results to the first method. Also the method of conditional averaging was applied to the latter signals.
2014
Istituto gas ionizzati - IGI - Sede Padova
Plasma diagnostics
electric probe array
scrape-off layer
poloidal velocity
shear layer
EDGE PLASMA
TOKAMAK
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/263225
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact