The aggregation induced emission (AIE) behavior shown by organic chromophores is very interesting for the development of efficient solid state devices. The restriction of intramolecular rotation is by far the most frequently assumed mechanism to explain this behavior; by blocking or reducing this rotation, upon rigidification of the environment, molecular luminescence is restored. By means of ultrafast pump-probe spectroscopy combined with density functional theory (DFT) and and time-dependent DFT calculations, we show direct evidence of intramolecular rotation in a simple push-pull organic chromophore,4-diethylamino-2 benzylidene malonic acid dimethyl ester, possessing AIE properties. The spectral evolution of the stimulated emission band of the chromophore in the first 45 ps after photoexcitation is fully consistent with the presence of a torsional relaxation toward the equilibrium geometry of the excited state, taking place on time scales that depend on the solvent viscosity. The structural features of the excited state fully account for the different photoluminescence efficiencies observed in solvents with different viscosities.

Direct Evidence of Torsional Motion in an Aggregation-Induced Emissive Chromophore

T Virgili;A Forni;C Botta
2013

Abstract

The aggregation induced emission (AIE) behavior shown by organic chromophores is very interesting for the development of efficient solid state devices. The restriction of intramolecular rotation is by far the most frequently assumed mechanism to explain this behavior; by blocking or reducing this rotation, upon rigidification of the environment, molecular luminescence is restored. By means of ultrafast pump-probe spectroscopy combined with density functional theory (DFT) and and time-dependent DFT calculations, we show direct evidence of intramolecular rotation in a simple push-pull organic chromophore,4-diethylamino-2 benzylidene malonic acid dimethyl ester, possessing AIE properties. The spectral evolution of the stimulated emission band of the chromophore in the first 45 ps after photoexcitation is fully consistent with the presence of a torsional relaxation toward the equilibrium geometry of the excited state, taking place on time scales that depend on the solvent viscosity. The structural features of the excited state fully account for the different photoluminescence efficiencies observed in solvents with different viscosities.
2013
Istituto di fotonica e nanotecnologie - IFN
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
File in questo prodotto:
File Dimensione Formato  
prod_273495-doc_93243.pdf

solo utenti autorizzati

Descrizione: Direct Evidence of Torsional Motion in an Aggregation-Induced Emissive Chromophore
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/263678
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 46
social impact