The ecotoxicity of pristine graphene nanoparticles (GNC1, PGMF) in model marine organisms was investigated. PGMF resulted more toxic than GNC1 to the bioluminescent bacterium Vibrio fischeri and the unicellular alga Dunaliella tertiolecta on the basis of EC50 values (end-points: inhibition of bioluminescence and growth, respectively). No acute toxicity was demonstrated with respect to the crustacean Artemia salina although light microscope images showed the presence of PGMF and GNC1 aggregates into the gut; a 48-h exposure experiment revealed an altered pattern of oxidative stress biomarkers.

Ecotoxicity of pristine graphene to marine organisms

Cevasco G;
2014

Abstract

The ecotoxicity of pristine graphene nanoparticles (GNC1, PGMF) in model marine organisms was investigated. PGMF resulted more toxic than GNC1 to the bioluminescent bacterium Vibrio fischeri and the unicellular alga Dunaliella tertiolecta on the basis of EC50 values (end-points: inhibition of bioluminescence and growth, respectively). No acute toxicity was demonstrated with respect to the crustacean Artemia salina although light microscope images showed the presence of PGMF and GNC1 aggregates into the gut; a 48-h exposure experiment revealed an altered pattern of oxidative stress biomarkers.
2014
Istituto per i Sistemi Biologici - ISB (ex IMC)
Artemia Salina
Dunaliella tertiolecta
Graphene
Oxidative stress
Toxicity
Vibrio fischeri
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/263853
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 123
  • ???jsp.display-item.citation.isi??? ND
social impact