We demonstrate experimentally the possibility of efficiently detecting properties of quantum channels and quantum gates. The experimentally realized quantum channel detection method has been recently proposed theoretically, and allows us to characterize the properties of quantum channels with a much smaller experimental effort than quantum process tomography. Here, the optimal detection scheme is first achieved for nonentanglement breaking channels of the depolarizing form and is based on the generation and detection of polarized entangled photons. We then demonstrate channel detection for nonseparable maps by considering the CNOT gate and employing two-photon hyperentangled states.

Experimental Detection of Quantum Channels

Mataloni Paolo;
2013

Abstract

We demonstrate experimentally the possibility of efficiently detecting properties of quantum channels and quantum gates. The experimentally realized quantum channel detection method has been recently proposed theoretically, and allows us to characterize the properties of quantum channels with a much smaller experimental effort than quantum process tomography. Here, the optimal detection scheme is first achieved for nonentanglement breaking channels of the depolarizing form and is based on the generation and detection of polarized entangled photons. We then demonstrate channel detection for nonseparable maps by considering the CNOT gate and employing two-photon hyperentangled states.
2013
Istituto Nazionale di Ottica - INO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/263975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact