The Western areas of the Adriatic Sea are subjected to inputs of inorganic nutrients and organic matter that can modify the trophic status of the waters and consequently, the microbiological processes involved in the carbon and phosphorus biogeochemical cycles, particularly in shallow coastal environments. To explore this topic, a survey was carried out during the spring of 2003 in a particular hydrodynamic area of the Gulf of Manfredonia, where the potential (P) and real (R) rates of four different microbial exoenzymatic activities (EEA) (alpha [alpha G] and glucosidases [G], leucine aminopeptidase [LAP], and alkaline phosphatase [AP]) as well as the P and R rates of prokaryotic heterotrophic production (PHP), AP as well as the P and R rates of PHP, primary production (PPnet), the prokaryotic and phototrophic stocks and basic hydrological parameters were examined. Three different water masses were found, with a thermohaline front (THF) being detected between the warmer and less saline coastal waters and colder and saltier offshore Adriatic waters. Under the general oligotrophic conditions of the entire Gulf, a decreasing gradient from the coastal toward the offshore areas was detected, with PHP, PPnet, stocks and EEA (alpha G, G, AP) being directly correlated with the temperature and inversely correlated with the salinity, whereas opposite relationships were observed for LAP activity. No enhancement of microbiological activities or stocks was observed at the THF. The use of P or R rates of microbiological activities, which decrease particularly for EEA, could result in discrepancies in interpreting the efficiency of several metabolic processes.
Role of prokaryotic biomasses and activities in carbon and phosphorus cycles at a coastal, thermohaline front and in offshore waters (Gulf of Manfredonia, Southern Adriatic Sea)
Monticelli LS;Caruso G;Decembrini F;Caroppo C;
2014
Abstract
The Western areas of the Adriatic Sea are subjected to inputs of inorganic nutrients and organic matter that can modify the trophic status of the waters and consequently, the microbiological processes involved in the carbon and phosphorus biogeochemical cycles, particularly in shallow coastal environments. To explore this topic, a survey was carried out during the spring of 2003 in a particular hydrodynamic area of the Gulf of Manfredonia, where the potential (P) and real (R) rates of four different microbial exoenzymatic activities (EEA) (alpha [alpha G] and glucosidases [G], leucine aminopeptidase [LAP], and alkaline phosphatase [AP]) as well as the P and R rates of prokaryotic heterotrophic production (PHP), AP as well as the P and R rates of PHP, primary production (PPnet), the prokaryotic and phototrophic stocks and basic hydrological parameters were examined. Three different water masses were found, with a thermohaline front (THF) being detected between the warmer and less saline coastal waters and colder and saltier offshore Adriatic waters. Under the general oligotrophic conditions of the entire Gulf, a decreasing gradient from the coastal toward the offshore areas was detected, with PHP, PPnet, stocks and EEA (alpha G, G, AP) being directly correlated with the temperature and inversely correlated with the salinity, whereas opposite relationships were observed for LAP activity. No enhancement of microbiological activities or stocks was observed at the THF. The use of P or R rates of microbiological activities, which decrease particularly for EEA, could result in discrepancies in interpreting the efficiency of several metabolic processes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.