We demonstrated a sensing technique for in-line ablation rate detection using a quantum cascade laser (QCL) under external optical feedback. The design of the QCL-based diagnostic system allowed to monitor the voltage modulation at the laser terminals induced by fast dynamics in the ablation process. Real-time detection of the ablation front velocity as well as in-situ investigations of the surface temperature were provided. Experimental results on fast ablation rates per pulse correlate well with the theoretical prediction. The detection range was demonstrated to be limited only by the QCL-probe emission wavelength, which is scalable up to the THz spectral region.

Quantum cascade laser-based sensing to investigate fast laser ablation process

Mezzapesa FP;Ancona A;
2013

Abstract

We demonstrated a sensing technique for in-line ablation rate detection using a quantum cascade laser (QCL) under external optical feedback. The design of the QCL-based diagnostic system allowed to monitor the voltage modulation at the laser terminals induced by fast dynamics in the ablation process. Real-time detection of the ablation front velocity as well as in-situ investigations of the surface temperature were provided. Experimental results on fast ablation rates per pulse correlate well with the theoretical prediction. The detection range was demonstrated to be limited only by the QCL-probe emission wavelength, which is scalable up to the THz spectral region.
2013
Istituto di fotonica e nanotecnologie - IFN
9780819493767
Emission wavelength
External optical feedback
In-situ investigations
Metrological instrumentation
Mid-IR lasers
Optical feedback interferometry
Optical sensing
Surface temperatures
Ablation
Atmospheric temperature
Feedback
Laser applications
Manufacture
Microelectronics
Sensors
Quantum cascade lasers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/264406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact