AimThe relationship between isoprenoid emission and hygrophily was investigated in woody plants of the Italian flora, which is representative of European diversity.MethodsVolatile isoprenoids (isoprene and monoterpenes) were measured, or data collected from the literature, for 154 species native or endemic to the Mediterranean. The Ellenberg indicator value for moisture (EIVM) was used to describe plant hygrophily. Phylogenetic analysis was carried out at a broader taxonomic scale on 128 species, and then refined on strong isoprene emitters (Salix and Populus species) based on isoprene synthase gene sequences (IspS).ResultsIsoprene emitters were significantly more common and isoprene emission was higher in hygrophilous EIVM classes, whereas monoterpene emitters were more widespread and monoterpene emission was higher in xeric classes. However, when controlling for phylogeny, isoprene emission was not associated with EIVM, possibly due to the large presence of Salicaceae among hygrophilous isoprene emitters. Moreover, the distribution of isoprene emitters among EIVM classes was not related to IspS-based phylogenesis in Populus and Salix, suggesting that the gene has not undergone evolution linked to ecological pressure. In contrast, the monoterpene emission pattern is independent of phylogeny, suggesting that the evolution of monoterpenes is associated with transitions to more xeric habitats.Main conclusionsOur results reveal an interesting ecological pattern linking isoprenoids and water availability. We suggest that isoprene is a trait that: (1) evolved in plants adapted to high water availability; (2) is replaced by more effective protection mechanisms, e.g. more stable isoprenoids, in plants adapting to more xeric environments; and (3) being strongly constrained by phylogeny, persists in Salicaceae adapted to more xeric environments.

Isoprenoid emission in hygrophyte and xerophyte European woody flora ecological and evolutionary implications

Loreto F;Bagnoli F;Calfapietra C;Fineschi S;Guidolotti G;
2014

Abstract

AimThe relationship between isoprenoid emission and hygrophily was investigated in woody plants of the Italian flora, which is representative of European diversity.MethodsVolatile isoprenoids (isoprene and monoterpenes) were measured, or data collected from the literature, for 154 species native or endemic to the Mediterranean. The Ellenberg indicator value for moisture (EIVM) was used to describe plant hygrophily. Phylogenetic analysis was carried out at a broader taxonomic scale on 128 species, and then refined on strong isoprene emitters (Salix and Populus species) based on isoprene synthase gene sequences (IspS).ResultsIsoprene emitters were significantly more common and isoprene emission was higher in hygrophilous EIVM classes, whereas monoterpene emitters were more widespread and monoterpene emission was higher in xeric classes. However, when controlling for phylogeny, isoprene emission was not associated with EIVM, possibly due to the large presence of Salicaceae among hygrophilous isoprene emitters. Moreover, the distribution of isoprene emitters among EIVM classes was not related to IspS-based phylogenesis in Populus and Salix, suggesting that the gene has not undergone evolution linked to ecological pressure. In contrast, the monoterpene emission pattern is independent of phylogeny, suggesting that the evolution of monoterpenes is associated with transitions to more xeric habitats.Main conclusionsOur results reveal an interesting ecological pattern linking isoprenoids and water availability. We suggest that isoprene is a trait that: (1) evolved in plants adapted to high water availability; (2) is replaced by more effective protection mechanisms, e.g. more stable isoprenoids, in plants adapting to more xeric environments; and (3) being strongly constrained by phylogeny, persists in Salicaceae adapted to more xeric environments.
2014
Istituto di Biologia Agro-ambientale e Forestale - IBAF - Sede Porano
Istituto per la Protezione Sostenibile delle Piante - IPSP - Sede Secondaria Sesto Fiorentino (FI)
Istituto di Bioscienze e Biorisorse - IBBR - Sede Secondaria Sesto Fiorentino (FI)
Adaptation, chemo-taxonomy, hygrophytes, isoprene, monoterpenes, phylogenies, salicaceae, xerophytes, water stress
File in questo prodotto:
File Dimensione Formato  
2013_Loreto_et_al_GEB.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 601.01 kB
Formato Adobe PDF
601.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/264471
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact