In tissue engineering the formation of organized and functional tissues is a very complex task: the cellular environment requires suitable physiological conditions that, presently, can be achieved and maintained by using properly designed biomaterials that can support the viability and all specific functions of cells. The creation of the biomimetic environment can be realized by using polymeric membranes with specific physico-chemical, morphological, and transport properties on the basis of the targeted tissue or organ. Membrane can act as an instructive extracellular matrix (ECM) for cells, especially for stem cells or progenitor cells, whose differentiation is desired for their therapeutic potential and usefulness in the toxicological testing. Similar to the ECM, membrane exhibits from microscale to nanoscale of chemistry and topography and is able to provide physical, chemical, and mechanical signals to the cells, which are important for guiding their differentiation.In this chapter, the authors report on tailor-made membrane systems designed and operated according to well-defined engineering criteria and their potential use in the biofabrication of tissues and organs. Membrane surface and transport properties play a pivotal role in the proliferation and differentiation process governing mass transfer and providing instructive signals to the cells. Furthermore, membrane bioreactors, through the fluid dynamics modulation, may simulate the in vivo complex physiological environment, ensuring an adequate mass transfer of nutrients and metabolites and the molecular and mechanical regulatory signals.

Polymeric Membranes for the Biofabrication of Tissues and Organs

LDe Bartolo
2013-01-01

Abstract

In tissue engineering the formation of organized and functional tissues is a very complex task: the cellular environment requires suitable physiological conditions that, presently, can be achieved and maintained by using properly designed biomaterials that can support the viability and all specific functions of cells. The creation of the biomimetic environment can be realized by using polymeric membranes with specific physico-chemical, morphological, and transport properties on the basis of the targeted tissue or organ. Membrane can act as an instructive extracellular matrix (ECM) for cells, especially for stem cells or progenitor cells, whose differentiation is desired for their therapeutic potential and usefulness in the toxicological testing. Similar to the ECM, membrane exhibits from microscale to nanoscale of chemistry and topography and is able to provide physical, chemical, and mechanical signals to the cells, which are important for guiding their differentiation.In this chapter, the authors report on tailor-made membrane systems designed and operated according to well-defined engineering criteria and their potential use in the biofabrication of tissues and organs. Membrane surface and transport properties play a pivotal role in the proliferation and differentiation process governing mass transfer and providing instructive signals to the cells. Furthermore, membrane bioreactors, through the fluid dynamics modulation, may simulate the in vivo complex physiological environment, ensuring an adequate mass transfer of nutrients and metabolites and the molecular and mechanical regulatory signals.
2013
Istituto per la Tecnologia delle Membrane - ITM
978-1-4557-2852-7
HOLLOW-FIBER MEMBRANES; LIVER-CELL CULTURE; IN-VITRO; HUMAN HEPATOCYTES; BIOREACTOR; FABRICATION; SCAFFOLDS; SYSTEM; FLAT; HYDROXYAPATITE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/264475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact