We present the implementation of a tapping-mode aperture scanning near-field optical microscope (Tapping-SNOM) to a Binder CB incubator (Istituto di Struttura della Materia, Rome, Italy). The microscope operates in the intermittent contact mode using a nonbent optical fibre allowing to reduce the perturbation exerted on the sample, while the incubator maintains a constant temperature, humidity and CO2 level. This instrument can maintain and analyse in a controlled environment different samples, both organic and nonorganic. In particular, the Tapping-SNOM can study different cell lines at nanometric resolution and in physiological buffer, following the evolution of the living cells almost indefinitely. We will present several examples of the capabilities of the tapping scanning near-field optical microscope in the study of different lines of living cells, showing corresponding topographical, optical or phase-lag images of the live samples, evidencing the excellent stability, versatility and resolution of the system.

Implementation of a bimorph-based aperture tapping-SNOM with an incubator to study the evolution of cultured living cells

Longo G;Girasole M;Cricenti A
2008

Abstract

We present the implementation of a tapping-mode aperture scanning near-field optical microscope (Tapping-SNOM) to a Binder CB incubator (Istituto di Struttura della Materia, Rome, Italy). The microscope operates in the intermittent contact mode using a nonbent optical fibre allowing to reduce the perturbation exerted on the sample, while the incubator maintains a constant temperature, humidity and CO2 level. This instrument can maintain and analyse in a controlled environment different samples, both organic and nonorganic. In particular, the Tapping-SNOM can study different cell lines at nanometric resolution and in physiological buffer, following the evolution of the living cells almost indefinitely. We will present several examples of the capabilities of the tapping scanning near-field optical microscope in the study of different lines of living cells, showing corresponding topographical, optical or phase-lag images of the live samples, evidencing the excellent stability, versatility and resolution of the system.
2008
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/26450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 15
social impact