Due to its surface sensitivity and high spatial resolution, scanning near-field optical microscopy (SNOM) has a significant potential to study the lateral organization of membrane domains and clusters. Compared to other techniques, infrared near-field microscopy in the spectroscopic mode has the advantage to be sensitive to specific chemical bonds. In fact, spectroscopic SNOM in the infrared spectral range (IR-SNOM) reveals the chemical content of the sample with a lateral resolution around 100 nm

Infrared Scanning Near-Field Optical Microscopy Investigates Order and Clusters in Model Membranes

Cricenti A
2008

Abstract

Due to its surface sensitivity and high spatial resolution, scanning near-field optical microscopy (SNOM) has a significant potential to study the lateral organization of membrane domains and clusters. Compared to other techniques, infrared near-field microscopy in the spectroscopic mode has the advantage to be sensitive to specific chemical bonds. In fact, spectroscopic SNOM in the infrared spectral range (IR-SNOM) reveals the chemical content of the sample with a lateral resolution around 100 nm
2008
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/26451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact