Many approaches have been adopted to solve the problem of image segmentation. Among them a noticeable part is based on graph theory casting the pixels as nodes in a graph. This paper proposes an algorithm to select clusters in the images (corresponding to relevant segments in the image) corresponding to the areas induced in the images through the search of the Minimum Spanning Tree (MST). In particular is is based on a clustering algorithm that extracts clusters computing a hierarchy of Minimum Spanning Trees. The main drawback of this previous algorithm is that the dimension of the cluster is not predictable and a relevant portion of found clusters can be composed by micro-clusters that are useless in the segments computation. A new algorithm and a new metric are proposed to select the exact number of clusters and avoid unmeaningful clusters.
Image Segmentation through a hierarchy of Minimum Spanning Trees
Infantino Ignazio;Vella Filippo;
2012
Abstract
Many approaches have been adopted to solve the problem of image segmentation. Among them a noticeable part is based on graph theory casting the pixels as nodes in a graph. This paper proposes an algorithm to select clusters in the images (corresponding to relevant segments in the image) corresponding to the areas induced in the images through the search of the Minimum Spanning Tree (MST). In particular is is based on a clustering algorithm that extracts clusters computing a hierarchy of Minimum Spanning Trees. The main drawback of this previous algorithm is that the dimension of the cluster is not predictable and a relevant portion of found clusters can be composed by micro-clusters that are useless in the segments computation. A new algorithm and a new metric are proposed to select the exact number of clusters and avoid unmeaningful clusters.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.