The collective dynamics of excitatory pulse-coupled neural networks with spike-timing-dependent plasticity (STDP) is studied. Depending on the model parameters stationary states characterized by high or low synchronization can be observed. In particular, at the transition between these two regimes, persistent irregular low frequency oscillations between strongly and weakly synchronized states are observable, which can be identified as infraslow oscillations with frequencies ?0.02-0.03 Hz. Their emergence can be explained in terms of the Sisyphus effect, a mechanism caused by a continuous feedback between the evolution of the coherent population activity and of the average synaptic weight. Due to this effect, the synaptic weights have oscillating equilibrium values, which prevents the neuronal population from relaxing into a stationary macroscopic state. © 2014 American Physical Society.

Sisyphus effect in pulse-coupled excitatory neural networks with spike-timing-dependent plasticity

Alessandro Torcini
2014

Abstract

The collective dynamics of excitatory pulse-coupled neural networks with spike-timing-dependent plasticity (STDP) is studied. Depending on the model parameters stationary states characterized by high or low synchronization can be observed. In particular, at the transition between these two regimes, persistent irregular low frequency oscillations between strongly and weakly synchronized states are observable, which can be identified as infraslow oscillations with frequencies ?0.02-0.03 Hz. Their emergence can be explained in terms of the Sisyphus effect, a mechanism caused by a continuous feedback between the evolution of the coherent population activity and of the average synaptic weight. Due to this effect, the synaptic weights have oscillating equilibrium values, which prevents the neuronal population from relaxing into a stationary macroscopic state. © 2014 American Physical Society.
2014
Istituto dei Sistemi Complessi - ISC
File in questo prodotto:
File Dimensione Formato  
prod_282483-doc_80878.pdf

solo utenti autorizzati

Descrizione: Sisyphus effect in pulse-coupled excitatory neural networks with spike-timing-dependent plasticity
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/264540
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact