In this work, photocurable perfluoropolyethers (PFPEs) have been used for the fabrication of microfluidic devices by a direct photolithographic process. During this mask-assisted photopolymerization technique, the material is directly photopolymerized in the presence of a mask, avoiding the use of a master. We demonstrate the high level of control in transferring micropattern features with high density, a minimum transferred size of 15 pm, a high aspect ratio (at least up to 6.5), and complex shapes useful for microfluidic applications. Moreover, we successfully apply this technology to fabricate sealed devices; the fabrication time scale for the overall process is around 5 min. The devices are able to withstand a flow pressure of up to 3.8 bar, as required for most microfluidics. Finally, the devices are tested with a model reaction employing organic solvents.
Direct Photolithography of Perfluoropolyethers for Solvent-Resistant Microfluidics
Marasso Simone L;Cocuzza Matteo;
2013
Abstract
In this work, photocurable perfluoropolyethers (PFPEs) have been used for the fabrication of microfluidic devices by a direct photolithographic process. During this mask-assisted photopolymerization technique, the material is directly photopolymerized in the presence of a mask, avoiding the use of a master. We demonstrate the high level of control in transferring micropattern features with high density, a minimum transferred size of 15 pm, a high aspect ratio (at least up to 6.5), and complex shapes useful for microfluidic applications. Moreover, we successfully apply this technology to fabricate sealed devices; the fabrication time scale for the overall process is around 5 min. The devices are able to withstand a flow pressure of up to 3.8 bar, as required for most microfluidics. Finally, the devices are tested with a model reaction employing organic solvents.| File | Dimensione | Formato | |
|---|---|---|---|
|
Direct Photolithography of Perfluoropolyethers for Solvent-Resistant Microfluidics.pdf
solo utenti autorizzati
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


