A noble-metal-free system for photochemical hydrogen production is described, based on ascorbic acid as sacrificial donor, aluminium pyridyl porphyrin as photosensitizer, and cobaloxime as catalyst. Although the aluminium porphyrin platform has docking sites for both the sacrificial donor and the catalyst, the resulting associated species are essentially inactive because of fast unimolecular reversible electron-transfer quenching. Rather, the photochemically active species is the fraction of sensitizer present, in the aqueous/organic solvent used for hydrogen evolution, as free species. As shown by nanosecond laser flash photolysis experiments, its long-lived triplet state reacts bimolecularly with the ascorbate donor, and the reduced sensitizer thus formed, subsequently reacts with the cobaloxime catalyst, thereby triggering the hydrogen evolution process. The performance is good, particularly in terms of turnover frequencies (TOF=10.8 or 3.6min-1, relative to the sensitizer or the catalyst, respectively) and the quantum yield (phi=4.6%, that is, 9.2% of maximum possible value). At high sacrificial donor concentration, the maximum turnover number (TON=352 or 117, relative to the sensitizer or the catalyst, respectively) is eventually limited by hydrogenation of both sensitizer (chlorin formation) and catalyst.

Photocatalytic Hydrogen Evolution with a Self-Assembling Reductant-Sensitizer-Catalyst System

Argazzi;Roberto;Chiorboli;Claudio;
2013

Abstract

A noble-metal-free system for photochemical hydrogen production is described, based on ascorbic acid as sacrificial donor, aluminium pyridyl porphyrin as photosensitizer, and cobaloxime as catalyst. Although the aluminium porphyrin platform has docking sites for both the sacrificial donor and the catalyst, the resulting associated species are essentially inactive because of fast unimolecular reversible electron-transfer quenching. Rather, the photochemically active species is the fraction of sensitizer present, in the aqueous/organic solvent used for hydrogen evolution, as free species. As shown by nanosecond laser flash photolysis experiments, its long-lived triplet state reacts bimolecularly with the ascorbate donor, and the reduced sensitizer thus formed, subsequently reacts with the cobaloxime catalyst, thereby triggering the hydrogen evolution process. The performance is good, particularly in terms of turnover frequencies (TOF=10.8 or 3.6min-1, relative to the sensitizer or the catalyst, respectively) and the quantum yield (phi=4.6%, that is, 9.2% of maximum possible value). At high sacrificial donor concentration, the maximum turnover number (TON=352 or 117, relative to the sensitizer or the catalyst, respectively) is eventually limited by hydrogenation of both sensitizer (chlorin formation) and catalyst.
2013
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
cobaloximes
hydrogen
porphyrinoids
self-assembling
solar fuels
PHOTOINDUCED ELECTRON-TRANSFER
OXYGEN-EVOLVING CATALYST
DRIVEN WATER OXIDATION
PHOTOSYSTEM-II
VISIBLE-LIGHT
ELECTROCATALYTIC REDUCTION
ARTIFICIAL PHOTOSYNTHESIS
MULTIPORPHYRIN ASSEMBLIES
ALUMINUM(III) PORPHYRINS
COBALOXIME CATALYSTS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/265154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? ND
social impact