The preparation and physical characterization of diverse porphyrin-derived double-walled carbon nanotubes (DWCNTs) conjugates are described. A porphyrin molecule is covalently linked and physically adsorbed to COOH-derived DWCNTs. The photophysical properties of all porphyrin-CNTs derivatives are studied in solution and in polymeric matrices. Definitive experimental evidence for photoinduced electron and/or energy transfer processes involving the porphyrin chromophores and the CNT wall is not obtained, but solid-state UV-vis absorption profiles display electronic transitions fingerprinting J- and H- type aggregates, where porphyrin molecules intermolecularly interact head-to-tail and face-to-face, respectively. In parallel, molecular modeling based on force-field simulations is performed to understand the structure of the porphyrin-CNTs interface and the nature of the interactions between the porphyrins and the DWCNTs. Finally, multilayered-type devices are fabricated with the aim of investigating the interaction of the porphyrin-derived DWCNTs with poly(3-hexylthiophene)-pyrene matrices containing small amounts of 1-[3-(methoxycarbonyl)propyl]-1-phenyl-[6.6]C61.

CNTs in Optoelectronic Devices: New Structural and Photophysical Insights on Porphyrin-DWCNTs Hybrid Materials

Armaroli;Nicola;
2012

Abstract

The preparation and physical characterization of diverse porphyrin-derived double-walled carbon nanotubes (DWCNTs) conjugates are described. A porphyrin molecule is covalently linked and physically adsorbed to COOH-derived DWCNTs. The photophysical properties of all porphyrin-CNTs derivatives are studied in solution and in polymeric matrices. Definitive experimental evidence for photoinduced electron and/or energy transfer processes involving the porphyrin chromophores and the CNT wall is not obtained, but solid-state UV-vis absorption profiles display electronic transitions fingerprinting J- and H- type aggregates, where porphyrin molecules intermolecularly interact head-to-tail and face-to-face, respectively. In parallel, molecular modeling based on force-field simulations is performed to understand the structure of the porphyrin-CNTs interface and the nature of the interactions between the porphyrins and the DWCNTs. Finally, multilayered-type devices are fabricated with the aim of investigating the interaction of the porphyrin-derived DWCNTs with poly(3-hexylthiophene)-pyrene matrices containing small amounts of 1-[3-(methoxycarbonyl)propyl]-1-phenyl-[6.6]C61.
2012
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
carbon nanotubes
carbon nanostructures
porphyrins
photophysics
organic optoelectronics
optical scanning microscopy
WALLED CARBON NANOTUBES
PHOTOINDUCED ELECTRON-TRANSFER
SOLAR-ENERGY CONVERSION
PHOTOVOLTAIC DEVICES
BUILDING-BLOCKS
POLYMER
CELLS
FUNCTIONALIZATION
NANOHYBRIDS
ASSEMBLIES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/265169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 27
social impact