This paper deals with the application and the performance analysis of a microwave tomography approach for Forward-Looking Radar (FLR) bistatic illumination. The imaging problem is faced by adopting an inverse scattering algorithm based on an approximated model of the electromagnetic scattering. In particular, the Born Approximation is used to describe the wave-material interaction and the targets are assumed to be embedded in a homogenous medium. The adoption of a simplified model of the electromagnetic scattering allows us to analyse how the reconstruction capabilities depend on the measurement configuration. An investigation of the resolution limits in the FLR case is performed and some numerical results are provided in order to show the effectiveness of the proposed approach in cases resembling the ones occurring in real situations. © Springer Science+Business Media New York 2014.

Performance assessment of a microwave tomographic approach for the forward looking radar configuration

Catapano I;Soldovieri F;
2014

Abstract

This paper deals with the application and the performance analysis of a microwave tomography approach for Forward-Looking Radar (FLR) bistatic illumination. The imaging problem is faced by adopting an inverse scattering algorithm based on an approximated model of the electromagnetic scattering. In particular, the Born Approximation is used to describe the wave-material interaction and the targets are assumed to be embedded in a homogenous medium. The adoption of a simplified model of the electromagnetic scattering allows us to analyse how the reconstruction capabilities depend on the measurement configuration. An investigation of the resolution limits in the FLR case is performed and some numerical results are provided in order to show the effectiveness of the proposed approach in cases resembling the ones occurring in real situations. © Springer Science+Business Media New York 2014.
2014
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Forward Looking Radar
Inverse scattering
Microwave tomography
SGround Penetrating Radar
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/265548
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact