Following the release of the international regulations on PBDEs and HBCD, the aim of this study is to evaluate the concentrations of novel brominated flame retardants (NBFRs), including 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), hexabromobenzene (HBB), and pentabromoethylbenzene (PBEB), in an Italian subalpine lake located in a populated and industrial area. The study investigated specifically the potential BFR biomagnification in a particular lake's pelagic food web, whose structure and dynamics were evaluated using the Stable Isotope Analysis. The potential BFR biomagnification was investigated by using the trophic-level adjusted BMFs and Trophic Magnification Factors (TMFs), confirming that HBCD and some PBDE congeners are able to biomagnify within food webs. Comparing the calculated values of BMFTL and TMF, a significant positive correlation was observed between the two factors, suggesting that the use of BMFTL to investigate the biomagnification potential of organic chemical compounds might be an appropriate approach when a simple food web is considered.

Concentrations and trophic interactions of novel brominated flame retardants, HBCD, and PBDEs in zooplankton and fish from Lake Maggiore (Northern Italy)

Pietro Volta;
2014

Abstract

Following the release of the international regulations on PBDEs and HBCD, the aim of this study is to evaluate the concentrations of novel brominated flame retardants (NBFRs), including 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), hexabromobenzene (HBB), and pentabromoethylbenzene (PBEB), in an Italian subalpine lake located in a populated and industrial area. The study investigated specifically the potential BFR biomagnification in a particular lake's pelagic food web, whose structure and dynamics were evaluated using the Stable Isotope Analysis. The potential BFR biomagnification was investigated by using the trophic-level adjusted BMFs and Trophic Magnification Factors (TMFs), confirming that HBCD and some PBDE congeners are able to biomagnify within food webs. Comparing the calculated values of BMFTL and TMF, a significant positive correlation was observed between the two factors, suggesting that the use of BMFTL to investigate the biomagnification potential of organic chemical compounds might be an appropriate approach when a simple food web is considered.
2014
Istituto di Ricerca Sulle Acque - IRSA
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Brominated flame retardants
Lake Maggiore
Pelagic food web
Trophic Magnification Factor
Trophic-level adjusted BMF
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/266657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? ND
social impact