He-Ne ring lasers are, actually, the most sensitive devices for inertial rotation measurements. Depending on their linear dimensions, they find applications in different fields: from inertial navigation to structural engineering, from metrology to geophysics and fundamental physics. Here we report the recent progresses toward the development of GINGER- Gyroscopes IN GEneral Relativity, a triaxial ultra-sensitive ring laser gyroscope whose primary target is a ground measurement the Lense-Thirring effect, a small shift of the Earth rotation rate foreseen by Einstein's General Relativity. This target implies a measurement of the Earth rotation rate with a sensitivity better than one part over 1010 and so requires a high level of stability and accuracy of the laser array and of the gyroscope stability. The main part of the research activity presented in this paper involves, then, a strict control of the systematic errors related to the fluctuation of the optical cavity geometry and of the laser parameters.

Toward the "perfect square" ring laser gyroscope

Porzio A;
2014

Abstract

He-Ne ring lasers are, actually, the most sensitive devices for inertial rotation measurements. Depending on their linear dimensions, they find applications in different fields: from inertial navigation to structural engineering, from metrology to geophysics and fundamental physics. Here we report the recent progresses toward the development of GINGER- Gyroscopes IN GEneral Relativity, a triaxial ultra-sensitive ring laser gyroscope whose primary target is a ground measurement the Lense-Thirring effect, a small shift of the Earth rotation rate foreseen by Einstein's General Relativity. This target implies a measurement of the Earth rotation rate with a sensitivity better than one part over 1010 and so requires a high level of stability and accuracy of the laser array and of the gyroscope stability. The main part of the research activity presented in this paper involves, then, a strict control of the systematic errors related to the fluctuation of the optical cavity geometry and of the laser parameters.
2014
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Dipartimento di Scienze Fisiche e Tecnologie della Materia - DSFTM
Laser noise
Lense - Thirring
Optical cavities control
Ring Laser Gyroscope
Sagnac effect
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/266898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact